Související stránky k článku Výzkumy v ASU AV ČR (169): Poruchovost české rozvodné sítě při zvýšené sluneční aktivitě opět na scéně
O negativních vlivech sluneční aktivity na pozemní infrastrukturu bylo napsáno mnoho. Geomagnetické superbouře po sobě často zanechávají poškozená zařízení. Ve Spojených státech se nedávno objevila studie poukazující, že i malé události mají svůj vliv na poruchovost zařízení. Představujeme práci, jejíž autoři provedli podobnou studii pro zařízení české rozvodné sítě. I zde byla nalezena zvýšená závadovost klíčových zařízení v období zvýšené sluneční aktivity.
Bouřlivé projevy sluneční aktivity mohou mít vliv na pozemní technologie, zejména na infrastrukturní sítě. Možný vliv na rozvodné sítě v prostředí střední Evropy byl až donedávna prakticky vylučován. Nedávné práce ale ukázaly možnou souvislost mezi zvýšenou závadovostí zařízení rozvodné sítě a zvýšenou geomagnetickou aktivitou. Autoři na tuto práci navázali a představili model, jaké indukované proudy je možné očekávat v klíčových rozvodnách páteřní elektrizační sítě v České republice.
Pomalu se blíží 200. výročí od narození matematika, genetika a meteorologa Gregora Mendela. Tento všestraně nadaný vědec se krátkou dobu věnoval i astronomii a položil spolu s jinými vědci té doby základy vědnímu oboru, který dnes nazýváme kosmické počasí. Abychom podrobněji vzpomenuli na astronomický výzkum jednoho z nejvýznamějších vědců, sepsali jsme krátký článek.
Že jsou sluneční erupce tím nejdynamičtějším projevem sluneční aktivity je všeobecně známo. Jejich vznik a vývoj však stále nejsou uspokojivě vysvětleny. Marta García-Rivas byla v čele rozsáhlého týmu pracovníků a studentů Slunečního oddělení ASU, který velmi detailně analyzoval netradičně bohatý materiál pořízený během jedné silnější erupce. V této studii si odborníci vystačili dokonce s analýzou jednoho jediného obrazového bodu.
Na únor 2020 přesunula ESA vypuštění kosmické sondy Solar Orbiter k výzkumu Slunce. Ke slunečnímu povrchu se má přiblížit na vzdálenost 42,5 miliónu km. Při průletu budou přístroje sondy mířit stále na stejné místo na Slunci, budou tedy provádět dlouhodobý výzkum jedné oblasti. Po sedmiletém výzkumu bude dráha sondy upravena tak, aby mohla lépe studovat polární oblasti. Avšak již nyní byl vyhlášen konkurs na návrh nové sondy, která bude vůbec poprvé studovat naši hvězdu z Lagrangeova libračního bodu L5 soustavy Slunce-Země.
Kupy galaxií představují ideální laboratoře pro studium vývoje galaxií. ESO137-001 je jednou z nejlépe studovaných galaxií, kterým se mezi odborníky říká medúzové galaxie (Jellyfish galaxies). Pavel Jáchym z ASU byl součástí týmu, který s pomocí sítě zjednodušených modelů vyšetřoval nejrůznější fyzikální podmínky, které přispěly k charakteristickému tvaru tohoto hvězdného ostrova.
Na základě nových počítačových simulací a pozorování možná budou vědci schopni vysvětlit, jak může magnetické pole Slunce měnit svoji polaritu každých 11 let. Tento významný objev vysvětluje, jak délka magnetického cyklu hvězdy závisí na její rotaci a může nám pomoci pochopit dramatické změny kosmického počasí v okolí Slunce a podobných hvězd.
Výskyt černých děr středních hmotností je pro současnou astrofyziku stále výzvou. Slibný kandidát na tento neobvyklý objekt se měl podle některých studií nacházet v centru hvězdokupy IRS13, která se nachází v širším jádru naší Galaxie. V. Pavlík z ASU vedl studii, která existenci tohoto typu objektu ve zmíněné hvězdokupě zpochybňuje.
Na srpen 2018 plánuje NASA vypuštění sluneční kosmické sondy Solar Probe Plus, která se k povrchu Slunce přiblíží až na 6 miliónů kilometrů – pro porovnání, planeta Merkur se může nejvíce přiblížit ke Slunci na 46 miliónů km. Dostane se tak sedmkrát blíže, než dosavadní kosmické sondy. Bude přitom vystavena intenzivnímu slunečnímu záření. Proto bude celá sonda a její přístrojové vybavení chráněno slunečním štítem z uhlíkových kompozitů o tloušťce 11,43 cm, který bude odolávat teplotám až 1370 °C.
Výzkum extrasolárních planet rozhodně neusnul na vavřínech. Obor se za poslední desetiletí výrazně rozvinul a od „pouhého“ hledání planet mimo Sluneční soustavu se posunul k jejich charakterizaci. S pomocí nejmodernějších přístrojů v kosmu i na Zemi získáváme přesné údaje, které jsou pak zpracovávány sofistikovanými metodami. Ján Šubjak ze Stelárního oddělení ASU a Centra pro astrofyziku Harvardské univerzity a Smithsonova institutu vedl tým, který pečlivě studoval vlastnosti vzdáleného planetárního systému.
Rentgenové dvojhvězdy jsou aktivními galaktickými jádry v malém. I proto se na jejich výzkum často používá technik odladěných pro tyto mnohem větší systémy. Početným tým pracovníků Oddělení galaxií a planetárních systémů ASU si pokládal otázku, zda jsou pro tyto případy používané modely validní a zda nejsou podané informace zkreslené.
Vojtěch Šimon z Astronomického ústavu AV studoval dlouhodobá pozorování dvou kataklyzmických proměnných, které v době astronomicky velice nedávné vybuchly jako klasické novy. Zejména na základě analýz světelných křivek si všímá změn, ke kterým v obou sledovaných systémech dochází. Oba tyto objekty v současnosti aspoň občas procházejí stádii vzplanutí trpasličích nov a zřejmě na povrchu bílého trpaslíka akumulují materiál pro další výbuch klasické novy.
Jak moc nás ovlivňuje sluneční aktivita? O efektech na technologické prvky již bylo napsáno mnoho. Studie, na níž se podílel i Michal Švanda ze Slunečního oddělení ASU, ukazuje, že svůj dopad má aktivita naší hvězdy i na dřevařský průmysl. Zdá se, že by mohla ovlivňovat výskyt kůrovcových kalamit.
Mezi nejzajímavější projevy sluneční aktivity patří bezpochyby sluneční erupce. Ty jsou často spojovány s ovlivněním technologických prvků na Zemi a v jejím bezprostředním okolí. K tomuto ovlivnění však dochází zejména v případě, kdy je erupce spojena s výronem hmoty do koróny. Ne všechny erupce jsou s těmito výrony spojeny a navíc existuje i třída erupcí, u nichž sice výron odstartuje, ale nedostane se ze sféry vlivu Slunce. O jedné takové nepovedené erupci pojednává studie, na níž se podílel i Marian Karlický ze Slunečního oddělení ASU.
Se zlepšující se dostupností rutinních pozorování chladných hvězd se o dění v jejich bezprostředním okolí dozvídáme stále větší podrobnosti. V mnoha případech nám získané údaje ukazují, že jsou tyto hvězdy velmi podobné s naším Sluncem, tedy přinejmenším pokud se týká hvězd chladnějších spektrálních typů. Petr Heinzel ze Slunečního oddělení ASU a z Vratislavské univerzity byl u studie, která určovala parametry hvězdné protuberance, jež opakovaně zakrývala velmi dlouho trvající erupci probíhající na téže hvězdě.
Jakým způsobem ovlivňuje přítomnost magnetického pole chování látky v akrečním disku v okolí černé díry? Přesně tuto otázku si položili autoři představované práce, mezi nimiž byl i Vladimír Karas z ASU. Studie, provedená s pomocí numerické simulace, poukazuje na nezanedbatelný vliv magnetismu v extrémních akrečních discích. Některé z popisovaných jevů by mohly vysvětlovat například proměnnost centra naší Galaxie.
Nedávná pozorování pořízená například Hubbleovým vesmírným dalekohledem nebo astrometrickou družicí Gaia přinesla detailní informace o pohybech hvězd uvnitř hvězdokup. Z nich vyvstaly nové otázky týkající se dlouhodobého dynamického vývoje těchto samogravitujících systémů. Václav Pavlík z ASU byl hlavním autorem teoretické studie, která posuzovala vliv počátečního rozdělení směrů rychlostí hvězd ve hvězdokupě na její vývoj.
Polární záře je fascinující přírodní jev, který byl pozorován a zkoumán po tisíce let. Dlouho jsme je měli spojeny jen s naší Zemí, s průzkumem Sluneční soustavy se ale ukázalo, že podobné jevy lze nalézt i u jiných planet. Od toho již není daleko k hledání polárních září u extrasolárních planet, kde je lze logicky očekávat. Ale polární záře u hvězd? Jiří Kubát z ASU byl u studie, která se zabývala možnou detekcí ekvivalentů polárních září v atmosférách horkých hvězd.
V literatuře přibývá studií prokazujících, že černé díry jsou ve vesmíru téměř všudypřítomné. Od těch hvězdných černých děr vyskytujících se například v kompaktních dvojhvězdách po černé veledíry v jádrech galaxií a kvazarů. Jejich detekce v drtivé většině případů spoléhá na přítomnost okolní látky, která kolem černé díry vytváří akreční disk. Parametry černých děr jsou pak z vlastností záření disku určovány. Ondřej Kopáček a Vladimír Karas z ASU publikovali teoretickou práci vyšetřující chování částic na orbitách v okolí černých děr.
Hvězdy zůstávají jasnými body, i když je pozorujeme sebevětšími dalekohledy. Ovšem některé procesy formují v okolí těchto hvězd roztodivné struktury plynu a prachu. Jednou z takových hvězd je R Aquarii, nám nejbližší symbiotická dvojhvězda. Tiina Liimets ze Stelárního oddělení byla u odhalovaní historie podivuhodných útvarů mlhoviny v bezprostředním okolí této hvězdy.