Úvodní strana  >  Články  >  Sluneční soustava  >  Gregor Mendel a kosmické počasí

Gregor Mendel a kosmické počasí

Gregor Mendel, jeho dalekohled a zákresy slunečních skvrn
Autor: Ústav teoretické fyziky a astrofyziky PřF MU

Pomalu se blíží 200. výročí od narození matematika, genetika a meteorologa Gregora Mendela. Tento všestraně nadaný vědec se krátkou dobu věnoval i astronomii a položil spolu s jinými vědci té doby základy vědnímu oboru, který dnes nazýváme kosmické počasí. Abychom podrobněji vzpomenuli na astronomický výzkum jednoho z nejvýznamějších vědců, sepsali jsme krátký článek.

Zákres slunečních skvrn pořízený Galileo Galilem
Zákres slunečních skvrn pořízený Galileo Galilem
Sluneční skvrny, tmavá místa na disku Slunce, pozorovala celá řada astronomů počínaje Galileo Galileem již v roce 1610. Galileo zaznamenal jejich nepravidelný tvar, nestabilnost, změny vzhledu, pohyb ve skupinách a následný zánik. Během dalšího roku dospěl k závěru, že souvisí se slunečním povrchem a postupují od východního okraje slunečního disku k západnímu. Všiml si také, že pohyb skvrn byl nerovnoměrný a že zpomaluje v blízkosti okrajů disku. Vyvrátil tak hypotézu, že skvrny představují objekty, které se nacházejí mezi Zemí a Sluncem. Podstata slunečních skvrn a jejich možný vliv na naši planetu ale zůstal ještě dlouho neznámý.

Tato oblast přilákala v posledním období jeho života také pozornost Mendela, který se do té doby zabýval zejména genetikou a meteorologií. Kromě studia astronomických knih si Mendel zakoupil dalekohled tehdy nové konstrukce Brachy a za použití projekčního stínítka v průběhu roku 1882 pozoroval sluneční skvrny. Mendel se snažil najít souvislosti vlivu slunečních skvrn na místní počasí. Tyto myšlenky se mu ale nepodařilo potvrdit. 

Polární záře na Aljašce Autor: Sebastian Saarloos
Polární záře na Aljašce
Autor: Sebastian Saarloos
Na podzim roku 1882 však byly pozorovány rozsáhlé polární záře v Evropě a Severní Americe. Podobně jako i jiní v té době Mendel tak začal spojovat silný výskyt slunečních skvrn s polárními zářemi, zemským magnetismem a místním počasím. Můžeme ho tak považovat za jednoho z zakladatelů nového oboru, který dnes nazýváme kosmické počasí. Lze také předpokládat, že Mendel zamýšlel své pozorování matematicky zpracovat, případně interpretovat podstatu slunečních skvrn, k čemuž měl nepochybně vhodnou fyzikální a matematickou průpravu. Pravděpodobně se k tomu však na sklonku života již nedostal.

Přestože Mendel ve výzkumu kosmického počasí nepokračoval, tento vědní obor se začátkem 20. století rapidně rozvíjel. V dnešní době hraje jeho studium jednu z nejdůležitějších úloh při ochraně našich technologií, ať už se jedná o satelity na oběžné dráze nebo rozvodné elektrické sítě.

Důležitost studia kosmického počasí si lze ukázat hned na několika příkladech. Ani ne 100 let po tom, co Mendel pozoroval sluneční skvrny, kosmické počasí změnilo postoj NASA k vesmírným misím. V srpnu roku 1972 totiž silné sluneční bouře nejenže způsobily výpadky elektrického vedení a problémy v telekomunikaci na několika kontinentech, ale také vyděsily vedoucí mise Apollo. Jedna ze slunečních erupcí byla totiž natolik silná, že pokud by se odehrála během vycházky astronautů po Měsíci, byla by pro ně dávka radiace zřejmě smrtelná. Naštěstí se událost odehrála po přistání Apolla 16 a před vzletem Apolla 17. Astronauti tak nebyli ohroženi na životech.

To, že stejné sluneční bouře měly za následek detonaci několika podmořských min poblíž Vietnamského pobřeží (v průběhu Vietnamské války!) jen potvrdilo, že i Slunce může hrát důležitou roli ve vývoji válečných konfliktů.

Americký systém včasného varování proti balistickým střelám BMEWS Autor: Historic American Buildings Survey
Americký systém včasného varování proti balistickým střelám BMEWS
Autor: Historic American Buildings Survey
Ještě temnější stránku ukázalo kosmické počasí v květnu roku 1967, kdy téměř vyvolalo třetí světovou válku. 23. května 1967 zaznamenalo Severoamerické velitelství protivzdušné obrany (NORAD) problémy v rádiové komunikaci se svými letouny. Po hodině snah o obnovení se rádiová komunikace vrátila zpět, aby se po 15 minutách opět vytratila. Ve stejném okamžiku navíc došlo k něčemu nečekanému a děsivému. Systém včasného varování pro příchozí balistické střely (pravděpodobně nesoucí nukleární zbraně) spustil alarm. Jasný signál na 440 MHz mohl znamenat jen dvě věci: blížící se střelu nebo rušení nepřítelem. Obojí bylo bráno jako válečný akt.

NORAD vydalo rozkaz pilotům k nasednutí do bombardérů a přípravě ke vzletu. Naštěstí tři sluneční fyzici, kteří pracovali teprve v rok starém slunečním oddělení NORADu, rozpoznali, že zdrojem signálu je Slunce. Jeden telefonát zastavil akci, která by pravděpodobně vedla ke třetí světové válce.

Transformátor zničený sluneční aktivitou v roce 1989 Autor: R. Girgis a K. Vedante, 2012
Transformátor zničený sluneční aktivitou v roce 1989
Autor: R. Girgis a K. Vedante, 2012
Kosmické počasí způsobuje i méně dramatické, přesto závažné problémy, jako jsou výpadky a nepřesnost navigace, korozi plynovodů a ropovodů, zvýšenou radiaci během letu, především skrz polární oblasti, nebo také poškození satelitů.
Otázka, která kdysi trápila Mendela - zda-li má kosmické počasí vliv na místní, atmosférické počasí - je stále otevřená. Vědci nadále zkoumají souvislost mezi kosmickým zářením a tvorbou oblačnosti. Co je ale již nyní jasné je, jakou důležitou roli hraje kosmické počasí v našem každodenním životě.

Autoři: 
Vladimír Štefl, Ústav teoretické fyziky a astrofyziky, PřF MU
Lenka Zychová, Královský Belgický Institut Aeronomie
Václav Glos, Ústav teoretické fyziky a astrofyziky, PřF MU




O autorovi

Václav Glos

Václav Glos

Doktorand na Ústavu teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity v Brně, kde zároveň působí jako PR koordinátor. Zabývá se výzkumem slupkových galaxií, produkcí popularizačních videí, organizací událostí pro širokou veřejnost, studenty a zájemce o studium a koordinování astronomického kroužku.

Štítky: Lenka Zychová, Vladimír Štefl, Galileo Galilei, Sluneční skvrny, Kosmické počasí, Gregor Mendel


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »