Úvodní strana  >  Články  >  Hvězdy  >  Kosmický prach se formuje při explozích supernov

Kosmický prach se formuje při explozích supernov

Vznikající kosmický prach v důsledku rázové vlny při explozi supernovy
Autor: Cardiff University

Astronomové oznámili, že se jim podařilo vyřešit dlouhodobou záhadu, pokud se týká vzniku hvězdného prachu, který tvoří základní stavební materiál hvězd a planet ve vesmíru. Kosmický prach obsahuje nepatrné částečky hmoty a organický materiál a je rozptýlen napříč celým vesmírem. Je vytvářen především ve hvězdách a následně je rozfoukán pomalým hvězdným větrem či při explozích hmotných hvězd.

Až doposud měli astronomové jen malé znalosti o tom, proč existuje tak velké množství prachu v mezihvězdném prostoru. Z teoretických odhadů vyplývá, že by měl při explozích supernov zaniknout.

Exploze supernovy je událost, která nastává při náhlé smrti hvězdy a je jednou z nejvíce energetických událostí ve vesmíru vytvářejících rázovou vlnu, která ničí téměř všechno, co jí stojí v cestě. Přesto při novém výzkumu publikovaném v Monthly Notices of the Royal Astronomical Society byl pozorován přežívající kosmický prach v okolí nejbližší supernovy 1987A.

Stratosférická létající observatoř SOFIA Autor: NASA
Stratosférická létající observatoř SOFIA
Autor: NASA
Vědci z NASA použili k pozorování vědeckou létající observatoř SOFIA (Stratospheric Observatory for Infrared Astronomy), která detekovala kosmický prach ve výrazných prstencích, které se vytvořily jako součást exploze supernovy 1987A.

Z výsledků pozorování vyplývá, že zde dochází k prudké produkci kosmického prachu uvnitř prstenců, což vedlo vědecký tým k představě, že prach může být ve skutečnosti znovu vytvářen po jeho zničení bezprostředně po průchodu rázové vlny.

Tato představa – kdy prostředí po průchodu rázové vlny může být vhodné k vytvoření nebo k přetvoření prachu – nebyla nikdy dříve zvažována a může být rozhodující pro plné pochopení, jak je kosmický prach ničen a znovu vytvářen.

Již víme o pozvolna se pohybujícím prachu v srdci supernovy 1987A,“ říká Mikako Matsuura, hlavní autorka článku ze School of Physics and Astronomy. „Vznikl z těžkých prvků vytvořených v jádru umírající hvězdy. Avšak pozorování pomocí létající observatoře SOFIA nám říkají něco naprosto nového.“

Částice kosmického prachu mohou být zahřáty z desítek na stovky stupňů, což vede k tomu, že vyzařují v oboru infračerveného záření a milimetrových vln. Pozorování emise prachu v oblasti milimetrových vln může být uskutečněno pomocí pozemských teleskopů. Nicméně pozorování v oboru infračerveného záření je téměř nemožné kvůli interferenci v důsledku přítomnosti vodní páry a oxidu uhličitého v zemské atmosféře.

Protože se observatoř SOFIA nacházela při pozorování nad většinou „překážejících“ molekul, poskytuje přístup k části infračerveného záření, které není dostupné při sledování ze zemského povrchu.

Zdroje a doporučené odkazy:
[1] phys.org
[2] cardiff.ac.uk

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Létající observatoř SOFIA, Supernova 1987A, Exploze supernovy


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »