Úvodní strana  >  Články  >  Kosmonautika  >  Osvědčí se nový typ tepelného štítu?

Osvědčí se nový typ tepelného štítu?

Připravovaná zkouška magnetického tepelného štítu
Připravovaná zkouška magnetického tepelného štítu
Tepelný štít je důležitou součástí každého kosmického dopravního prostředku, který při návratu z vesmíru vstupuje vysokou rychlostí do zemské atmosféry. Nová generace tepelných štítů, ať už k ochraně kosmonautů či různého nákladu, bude možná využívat supravodivé magnety k odvedení plazmy vznikající na přední straně kosmické lodi při jejím průletu zemskou atmosférou. První zkoušky tepelného štítu tohoto typu budou zřejmě uskutečněny až za 10 let, avšak základní technologie se již vyvíjejí.

Tradiční tepelné štíty využívají proces ablace k odvodu tepla z povrchu kosmické lodi. V podstatě materiál, který ochraňuje vnější povrch návratové kabiny, se odpařuje a tím odvádí pryč přebytečné teplo. Tepelný štít tohoto typu používají například ruské kosmické lodi Sojuz. Americký raketoplán naopak používá izolační dlaždice, které jsou špatnými vodiči tepla a zabraňují tak jeho prostupu na konstrukci dopravního prostředku. Magnetický tepelný štít by měl být lehčí a znovu použitelný při každém dalším kosmickém letu.

Magnetický tepelný štít bude využívat supravodivé materiály k vytvoření velmi silného magnetického pole v blízkosti povrchu čelní strany dopravního prostředku. Toto magnetické pole bude odvádět stranou velmi horkou plazmu, která vzniká za vysokých teplot v důsledku tření povrchu kosmického tělesa o vzduch při průletu atmosférou Země. Tak bude redukována nebo zcela eliminována potřeba izolačního nebo ablativního materiálu k ochraně kosmické lodi.

Problémy s tepelným štítem na povrchu kosmické lodi mohou mít fatální důsledky; katastrofa amerického raketoplánu Columbia byla způsobena především v důsledku poškození dlaždic tepelné ochrany na povrchu raketoplánu v průběhu startu na oběžnou dráhu. Nově navrhovaný systém může být mnohem spolehlivější a méně náchylný k poškození než v současné době používané technologie výroby ochranných tepelných štítů.

Start ruské balistické rakety Volna z ponorky
Start ruské balistické rakety Volna z ponorky
Na evropské letecko-kosmické konferenci, která se uskutečnila v říjnu 2009 v Manchesteru, prohlásil Detlev Konigorski ze soukromé aerokosmické firmy Astrium EADS, že ve spolupráci s německým letecko-kosmickým střediskem DLR (Deutschen Zentrums for Luft- und Raumfahrt) a Evropskou kosmickou agenturou ESA firma Astrium pracuje na vývoji magnetického tepelného štítu, který by mohl být vyzkoušen již v příštích několika letech.

Vědci v současné době vyhodnocují vlastnosti supravodivého materiálu, avšak ještě nemají vyřešeny všechny technické detaily, jak jej umístit na ruské balistické pouzdro Volan pro připravovaný zkušební let. V tomto stadiu vývoje je nutno vyřešit ještě celou řadu technických problémů.

Pouzdro Volan opatřené magnetickým tepelným štítem bude vypuštěno na suborbitální dráhu raketou z ponorky. Modifikovaná balistická raketa Volna je schopna nést náklad o hmotnosti 650 kg. Pouzdro Volan vstoupí do zemské atmosféry rychlostí Mach 21 a přistane na poloostrově Kamčatka. Je zde ještě dlouhý seznam dalších technických problémů, které je nutno vyřešit před praktickým použitím nového typu tepelného štítu, takže nemůžeme očekávat, že podobným systémem bude vybavena například návratová kabina americké kosmické lodi Orion.

Nafukovací tepelný štít v představě grafika
Nafukovací tepelný štít v představě grafika
Nutno dodat, že již probíhají zkoušky tzv. nafukovacích tepelných štítů, které by rovněž mohly být využívány k ochraně vracejících se kosmických těles při průletu atmosférou. Mohly by jimi být vybaveny také kosmické sondy přistávající na planetách, obklopených atmosférou. Zkoušky těchto systémů (Inflatable Re-entry Vehicle Experiment, IRVE) probíhají již několik let. Nejprve se této problematice věnovala ESA ve spolupráci s Ruskem. Avšak vzhledem k problémům s oddělováním hlavice od rakety ne zrovna úspěšně.

V loňském roce navázala na tyto zkoušky NASA. Jeden z posledních pokusů byl realizován v srpnu roku 2009. Raketa Black Brant 9 startující ze základny Wallops Flight Facility vynesla do výšky přes 200 km nafukovací tepelný štít o hmotnosti 40 kg, složený v pouzdru o průměru 40 cm. V závěrečné fázi letu se pouzdro oddělilo, tepelný štít byl pod tlakem naplněn dusíkem, přičemž se nafoukl do podoby "klobouku" velké houby o průměru 3 m. Užitečné zatížení představoval navigační a telemetrický systém, shromažďující údaje o průběhu letu.

Zdroj: www.universetoday
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »