Úvodní strana  >  Články  >  Sluneční soustava  >  Barví prach z komet Merkur načerno?

Barví prach z komet Merkur načerno?

Nový výzkum naznačuje, že uhlík z kometárního materiálu , který bombarduje Merkur, může být důvod Merkurovy tmavé barvy.
Autor: Zdroj: NASA/Ames/Brown Unviersity

Astronomové si již dlouhou dobu pokládají otázku, proč je povrch nejmenší a nejvnitřnější planety naší Sluneční soustavy tak temný. Až do nynějška neexistovalo žádné uspokojivé vysvětlení této zajímavé skutečnosti. Nyní možná vědci přišli na nové vysvětlení, proč tomu tak je. Studie byla zveřejněna v časopise Nature Geoscience. Vědci zde naznačují, že za vše může poprašek uhlíku z prolétávajících komet, který „barvil“ Merkur na černo po miliardu let.

Tmavá barva Merkuru s nízkým albedem je pro vědce již dlouhou dobu záhadou. Merkur je dokonce mnohem tmavší než jeho nejbližší těleso bez detekovatelné atmosféry, náš Měsíc. Nejčastější příčinou pro zatemnění těles bez atmosféry je v zásadě přítomnost železa, které se na povrch dostane prostřednictvím dopadu mikrometeoritů či slunečního větru. Tyto procesy pak vytvářejí na povrchu tenkou vrstvu tmavých nanočástic železa.

Spektroskopická data však ukazují, že povrch Merkuru obsahuje velmi malé množství železa, dokonce méně, než je ho na Měsíci. Přesto je jeho barva černá. Proto zde musí být materiál odlišný od železa, který způsobuje tuto barva na Merkuru.

Autoři nového výzkumu navrhují místo železa uhlík. Ten by mohl zatemnit povrch Merkuru dostatečně. Dobře, ale proč by mělo být více uhlíku na Merkuru než na Měsíci? Vysvětlení autorů je založeno na dvou pozorování:

  • Komety se skládají v průměru kolem 18 % z uhlíku.
  • Počet dopadů komet na jednotku plochy povrchu planety se snižuje nepřímo úměrně klesající vzdálenosti od Slunce. Čím blíže se planeta Slunci nachází, tím stoupá gravitační vliv Slunce, které si díky své mnohonásobně větší hmotnosti tyto komety „přitahuje“ k sobě.

Když se komety nacházejí poblíž Merkuru, tedy v blízkosti Slunce, začínají se často rozpadat. To znamená, že Merkur je neustále vystaven bombardování materiálem z rozpadajících se komet, který obsahuje vysoký podíl uhlíku.

Vědci prováděli také modelace bombardování Merkuru a odhady počtu mikrometeoritů. Ty pomáhají odhadnout, jak často tento kometární odpad dopadá na Merkur, jak moc uhlíku se na povrchu udrží a kolik se vrací zpět do vesmíru. Výpočty naznačují, že povrch planety by měl za dobu bombardování (miliardy let) obsahovat 3 až 6 hmotnostních procent uhlíku.

Vzhledem k množství impaktního materiálu zanechaného na Merkuru se autoři domnívají, že větší množství dopadů meteoritů obohatilo povrch Merkuru o více uhlíku, než je tomu u Měsíce. Autoři studie však uvažovali pouze o velmi malých meteoritech, zvaných mikrometeority, u kterých předpokládali konstantní kulovitou velikost o průměru 2,5 mm a konstantní rychlost 20 km/s.

Ano, jedná se o drastické zjednodušení, meteoroidy mají přece různé velikosti a také vyšší rychlosti. Autoři studie si jsou toho vědomi, ale argumentují tím, že větší objekty mají vyšší rychlosti a proto nebudou zachyceny gravitačním polem Merkuru. Vliv větších objektů je tedy zanedbatelný a dominantními objekty pro dopad jsou tedy mikrometeority.

Jak můžete vidět na obrázku 1, odrazivost světla od povrchu obou materiálů je výrazně nižší, je-li přítomen uhlík a hodnoty jsou v souladu s nejtmavšími oblastmi na Merkuru.

Další částí práce bylo zjistit, jak velké ztmavení může být očekáváno ze všech těchto dopadů materiálu bohatého na uhlík. S tímto problémem se výzkumníci obrátili na NASA, na oddělení Ames Vertical Gun Range, které se zabývalo výzkumem Měsíce např. v průběhu mise Apollo. Vědci z AVGR střílejí projektily do materiálu podobného tomu měsíčnímu, smíchaného s organickými látkami, případně bez těchto organických látek. Když je náboj vystřelen do materiálu s organickými látkami, teplo vyvolané dopadem způsobuje tvorbu uhlíku.

Autoři testovali svou ideu metodou Monte Carlo (třída algoritmů pro simulaci systémů), díky níž vypočetli procentuální pravděpodobnost udržení meteoritů na Měsíci a na Merkuru při různých úhlech dopadu na povrch těchto těles.

Na obrázku 2 můžete vidět pravděpodobnost pro různé úhly dopadu mikrometeoritů a hmotnostní zlomek částic, které na povrchu Merkuru zůstanou.

Dopadající tělesa (mikrometeority) jsou řešeny jako několik buněk mřížky v kódu algoritmu. 

Pokles při sklonu dopadu 30° ukazuje, že při tomto úhlu mají mikrometeority vyšší dopadovou energii než při jiných úhlech dopadu.

Výsledky jsou také podobné pro stopové částice, které následují pohyb mikrometeoritů během simulace. Autoři vysvětlují změny pro sklon 15° asymetrickými šokovými podmínkami při dopadu na povrch, které jako takové způsobují, že určitá část hmoty nezůstane na povrchu. Nicméně tento proces – na rozdíl od první metody – neřeší mapování mikrometeoritů jako samostatných objektů podle pohybu stopových částic. 

Závěr

Z výzkumu je vidět, že dostatečné množství hmoty z impaktního tělesa zůstává na povrchu (v průměru 83 % na Merkuru a 63 % na Měsíci) a autoři tedy došli k závěru, že přibližně 50krát více mikrometeoritů bohatých na uhlík dopadá na Merkur než na Měsíc. Dopady mikrometeoritů tedy s největší pravděpodobností mohou způsobit ztmavnutí Merkuru. Jinými slovy: barva padajících kamenů je černá.

Zdroje a doporučené odkazy:
[1] Astrobites.org
[2] Phys.org



O autorovi

Sylvie Gorková

Sylvie Gorková

O astronomii se zajímá od svých 15 let. Pochází z Kroměříže. Zde se také na místní hvězdárně zapojila do aktivního pozorování meteorů. Je členkou Společnosti pro meziplanetární hmotu (SMPH).V současné době pracuje jako odborný pracovník Hvězdárny Valašské Meziříčí. Od roku 2012 publikuje články na stránkách SMPH, od roku 2014 pak také na astro.cz a na stránkách hvězdárny Valašské Meziříčí.

Štítky: Merkur, Uhlík


19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »