Úvodní strana  >  Články  >  Sluneční soustava  >  Venuše byla v minulosti obyvatelnou planetou

Venuše byla v minulosti obyvatelnou planetou

Venuše byla možná obyvatelnou planetou
Autor: NASA

Venuše byla v minulosti obyvatelnou planetou. Aspoň podle nejnovějšího výzkumu americké kosmické agentury NASA. Podle ní byl na Venuši před 3,5 miliardami let mělký oceán a povrch planety byl jen mírně chladnější než povrch dnešní Země. Jak vědci zjistili, jak vypadala dávná Venuše? 

Vědci z Goddardova institutu pro výzkum vesmíru v New Yorku (GISS), který spadá pod kosmickou agenturu NASa využili techniku modelování klimatu. Použili stejný klimatický model, který byl vytvořen pro sledování globálního oteplování na Zemi.

Vědci se dlouho domnívali, že Venuše je vytvořena z ingrediencí podobným pozemským, ale během vývoje následovala jiná evoluční cesta. Na myšlenku, že na planetě mohl být dříve oceán, poprvé poukázaly výsledky měření z mise Pioneer z roku 1980. Nicméně, Venuše je blíže ke Slunci než Země, tudíž dostává mnohem více slunečního světla. Voda na planetě Venuše se tak časem vlivem narůstající teploty vypařila a následně se vodní molekuly střetly s částicemi slunečního větru, což vedlo k jejich rozpadu na kyslík a vodík a úniku volných částic z atmosféry. Bez vody na povrchu, oxidu uhličitého v atmosféře došlo k nekontrolovatelnému skleníkovému efektu, který vytvořil současné podmínky na planetě.

Při nynější modelaci museli vzít vědci v potaz, že Slunce před 3,5 miliardami let zářilo o 30 procent méně než dnes. K novému výzkumu byly také využity topografická data ze sondy Magellan. Výsledky ukazují, že Venuše mohla být v minulosti velmi odlišné místo než je tomu dnes.

Michael Way, autor studie, popsal dávné podmínky na Venuši: „Podnebí na Venuši bylo poměrně mírné ve srovnáním s tím dnešním. Jeden z našich předpokladů zahrnutých v modelu je, že Venuše měla stejnou rychlost otáčení i před 3,5 miliardami let. Rychlost otáčení hraje klíčovou roli v dynamice vývoje klimatu. Předchozí studie totiž ukázaly, že planety podobné Zemi, které rotují pomaleji absorbují daleko více slunečního toku do své atmosféry a přesto si udrží poměrně nízké teploty. Nikdo předtím nezkoumal, jak by to vypadalo v případě Venuše. A my jsme zjistili, že skutečně měla možná mírné klima.“

Právě rotace je v modelování klimatu důležitý faktor. A Venuše rotuje velmi pomalu. Na Venuši je jeden den 177 pozemských dní, což znamená, že každé místo je vystaveno slunečnímu záření po dobu 2 měsíci. To způsobilo na Venuši silnou vrstvů mraků a deště, snížilo to zahřívání povrchu a výsledkem byly průměrné teploty o něco nižší než jsou dnes na Zemi. Důležité je, že dříve se předpokládalo, že pomalá rotace planety je způsobena hustou atmosférou Venuše. Ale nové výzkumy ukázaly, že planety mohou mít stejně pomalou rotaci i při řidké atmosféře. Což navedlo vědce použít při modelování dávného klimatu Venuše dnešní rychlost její rotace.

V současnosti je Venuše nehostinná a pekelná planeta s teplotou kolem 460 stupňů Celcia na povrchu. A má hustou atmosféru, která se skládá především z oxydu uhličitého. Což způsobuje silný skleníkový efekt, který je hlavním důvodem vysokých teplot, což způsobe neexistenci kapalné vody. Jinak je Venuše nejpodobnější Zemi, co se týče velikosti a gravitace v naší Sluneční soustave.  

Podle vědců z Goddardova institutu mohlo zůstat klima na Venuši zůstat obyvatelné pro živé organismy až do doby před 715 miliony lety. Předpokládá se tedy, že Venuše podobně jako Země mohla mít oceány kapalné vody. Takže v dávné době tam život být mohl. Pokud měla Venuše mělké oceány tak jak předpokládáme v modelu, atmosféru ne příliš odlišnou od současné Země a rotovala pomalu, mohla tam být kapalná voda.   Zda také život však s jistotou říct nelze. Důvod je zřejmý, nejsme si stoprocentně jisti, jak vznikl život na Zemi. Avšak podmínky pro vznik života byly podobné těm, jaké předpokládáme na planetě Zemi.

Výzkum byl proveden v rámci NASA jako součást programu Nexus for Exoplanet System Science (NexSS), jehož cílem je urychlit hledání života na planetách obíhajících kolem jiných hvězd, tím, že kombinuje poznatky z oblasti astrofyziky, planetární vědy, vědy o Zemi atd.

Výsledky tohoto výzkumu právě ukazují na důležitost rotace a topografie planety.  A to především proto, že chceme porozumět klimatické historie planet podobné Venuši také v jiných planetárních soustavách. Jedná se o tzv. exoplanety, jejichž počet neustále narůstá.

Výzkum má přímé důsledky pro budoucí mise NASA, jako je např.  vesmírný dalekohled Jamese Webba, který se pokusí rozpoznat případné obyvatelné planety a charakterizovat jejich atmosféru.

Výsledky výzkumu byly publikované tento týden v časopise Geophysical Research Letters. 

Zdroje a doporučené odkazy:
[1] NASA.gov

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

Sylvie Gorková

Sylvie Gorková

O astronomii se zajímá od svých 15 let. Pochází z Kroměříže. Zde se také na místní hvězdárně zapojila do aktivního pozorování meteorů. Je členkou Společnosti pro meziplanetární hmotu (SMPH).V současné době pracuje jako odborný pracovník Hvězdárny Valašské Meziříčí. Od roku 2012 publikuje články na stránkách SMPH, od roku 2014 pak také na astro.cz a na stránkách hvězdárny Valašské Meziříčí.

Štítky: Venuše, Obyvatelnost planety


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »