Úvodní strana  >  Články  >  Sluneční soustava  >  Ceres po roce se sondou Dawn – 3. díl

Ceres po roce se sondou Dawn – 3. díl

Snímek kuželovité hory Ahuna Mons pořízený sondou Dawn z nejnižší oběžné dráhy
Autor: NASA/Dawn

Ze všech těles Sluneční soustavy, o nichž bezpečně víme, že obsahují významné množství vody (nebo vodního ledu), nepočítáme-li komety, je Ceres ke Slunci nejbližším. Země je samozřejmě blíže, ale celkové množství vody v zemském tělese je pouhých 0,02 %, zatímco na Ceresu je to možná až několik desítek procent. Sonda Dawn se k této trpasličí planetě vydala mimo jiné proto, aby po této vodě pátrala. Ačkoliv řada výsledků teprve čeká na pečlivější zpracování, po roce její přítomnosti u Ceresu je množství informací, které přinesla, působivé. V tomto seriálu se pokusíme shrnout ty nejzásadnější. V prvním dílu jsme se zaměřili na charakteristiku trpasličí planety a co bychom měli očekávat ve svrchních vrstvách. Druhý díl se zaměřil na liniové útvary a světlé skvrny. Ve třetím dílu se podíváme na kryovulkanismus a horu Ahuna.

Kryovulkanismus a kryoplutonismus

K pochopení kryovulkanismu (aktivitě vedoucí k výronu kapaliny na povrch ledového tělesa) a útvarů s ním souvisejících, které se na Ceresu nacházejí, se musíme na chvíli opět vrátit do raných fází jeho vývoje. Teplo z rozpadu radioaktivních izotopů roztavilo ledovo-kamennou směs, přičemž kamenná složka klesla do centra a vytvořila jádro, nad níž zůstal „bahnitý“ plášť. Tím ale vývoj neskončil, protože teplota v nitru dále narůstala. Modely ukazují, že nejvyšší teploty dosáhlo nitro Ceresu necelou jednu miliardu let po svém vzniku. Teplota v centru tehdy vystoupala asi na 200 °C a průměrná teplota celého tělesa byla asi 50 °C. Je tedy evidentní, že po poměrně dlouhou část své historie obsahoval Ceres skutečně velké množství kapalné vody.

Zde si dovolme malou, zato odvážnou odbočku: z pozemských fosilních záznamů víme, že necelou miliardu let po vzniku Sluneční soustavy, tedy v nejteplejší éře nitra Ceresu, existovaly již na Zemi zárodky primitivního života. Nejen Ceres, ale i další srovnatelně velká ledovo-kamenná tělesa, jimž v té době Sluneční soustava oplývala, měla ve svém nitru tehdy kapalnou vodu, tolik ke vzniku života potřebnou...

Od té doby nitro Ceresu postupně chladne. Dnešní teplota podpovrchových vrstev (v hloubce pár metrů, kde již neprobíhá ohřev slunečním zářením) je asi -90 °C, postupně však narůstá do centra; na rozhraní pláště a kamenného jádra je asi  -20 °C. Koncentrovaný roztok soli (tzv. solanka) může být ale kapalný až do teplot okolo -70 °C – kapsy kapaliny se tedy mohou objevovat už pár kilometrů pod povrchem. Od 110 km hlouběji se může dokonce vyskytovat i souvislá vrstva kapaliny. Postupné zamrzání tohoto „oceánu“, případně kapalných kapes pod povrchem, může dobře vysvětlovat kryovulkanismus na povrchu. Led má větší objem než voda, při zamrzání se tedy zvyšuje tlak na okolní kapalinu a ta prostupuje prasklinami a póry k povrchu. Navíc se při mrznutí z ledu do okolní vody vylučuje sůl; její koncentrace ve zbylém roztoku tedy stoupá, což ještě více usnadňuje jeho prostup chladnější kůrou. K výstupu kapaliny na povrch dochází preferenčně podél již existujících puklin, které jsou ovšem ovlivňovány impakty, proto řada světlých skvrn koresponduje s krátery.

Možnost současného kapalného oceánu v plášti je natolik lákavým tématem, že se u něj na chvíli zastavíme. V červnu 2015 totiž došlo k zajímavé události. Částicový detektor GRaND na sondě Dawn zachytil 19. 6. průlet energetického plazmatu okolo Ceresu, které tam doputovalo po jedné ze slunečních erupcí. Ještě několik dalších dnů však sonda opakovaně prolétávala pásem vysoceenergetických elektronů, které se zachytily v magnetickém poli tělesa. Na tom je ovšem pozoruhodné to, že Ceres nemá vlastní magnetické pole. Soudí se tedy, že oblak plazmatu, který si sebou nese své magnetické pole, dočasně naindukoval magnetické pole okolo trpasličí planety. K tomu je ale zapotřebí vodivý materiál. Nabízí se pro něj dvě vysvětlení: velice řídká atmosféra okolo tělesa, zionizovaná při průchodu plazmového oblaku, nebo podpovrchová vrstva slané vody, což by podporovalo simulace uváděné výše (obdobně byly sondou Galileo prokázány podpovrchové oceány slané vody na měsících Europa a Ganymed, v jejich případě na základě magnetického pole indukované mnohem silnější magnetosférou Jupiteru). Bohužel na základě získaných dat nelze zatím rozhodnout, které z těchto dvou vysvětlení je správné.

Průchod energetického plazmatu ze Slunce zachytila sonda Dawn několikrát i během svého pobytu na oběžné dráze okolo planetky Vesta, ale tam žádné druhotné efekty pozorovány nebyly.

Přesuňme nyní svou pozornost na druhý proces zmíněný v záhlaví tohoto dílu. Slovo „kryoplutonismus“ bylo použito pouze v nadsázce, jako parafráze na kryovulkanismus. Slovem „pluton“ totiž geologie označuje útvary magmatického původu, při nichž se ale láva nedostala až na zemský povrch.Že je kůra Ceresu (pod svrchní vrstvou regolitu) protkána dlouhými prasklinami, jsme již zmínili v předchozích dílech. Nyní se podívejme na globální topografii Ceresu. 

Topografická mapa (vyvýšeniny a sníženiny oproti referenčnímu elipsoidu) na základě měření ze sondy Dawn Autor: NASA/Dawn
Topografická mapa (vyvýšeniny a sníženiny oproti referenčnímu elipsoidu) na základě měření ze sondy Dawn
Autor: NASA/Dawn

Na jeho povrchu se vyskytují dva typy vyvýšenin. První typ rozeznáme již při prvním pohledu na topografickou mapu (viz obrázek), kde kromě impaktních kráterů v podobě prohlubní vidíme také několik rozsáhlých oblastí o velikostech od 300 do 600 km převyšujících okolní terén o několik kilometrů (červené plochy). Kromě těchto „vrchovin“ se dosud podařilo na Ceresu identifikovat asi dvacet „dómů“ – mírně vyboulených kopečků s průměrem maximálně pár desítek kilometrů. Ty se prozradí teprve podrobnějším studiem topografie.

Ukázka dvou geologických map – oblast okolo kráteru Fejokoo (nahoře) a okolo kuželovité hory Ahuna Mons (dole). Červenou barvou jsou vyznačeny dómy (v legendě jako tholus) Autor: K. H. G. Hughson et al., T. Platz et al., LPSC2016
Ukázka dvou geologických map – oblast okolo kráteru Fejokoo (nahoře) a okolo kuželovité hory Ahuna Mons (dole). Červenou barvou jsou vyznačeny dómy (v legendě jako tholus)
Autor: K. H. G. Hughson et al., T. Platz et al., LPSC2016
Na dalším obrázku vidíme ukázky geologických map dvou sektorů z povrchu Ceresu, kde jsou tyto dómy označeny červenou barvou a v legendě jako „tholus“ (latinsky dóm nebo klenba). Všechny tyto dómy mají oproti okolnímu terénu výšku několik km. Ačkoliv jim chybí ostré svahy jako v případě Ahuna Mons (hora ve tvaru pyramidy, o níž bude ještě řeč), představují tyto útvary zřejmě příklady intrusivního vulkanizmu (prostup magmatu horninou, kdy ale nedojde k výlevu až na povrch). Není bez zajímavosti, že Ahuna Mons se nachází na okraji jednoho takového dómu.

Podle předběžných modelů se zdá, že jak rozsáhlé vrchoviny, tak menší dómy, jsou nejspíše pozůstatkem konvekce v jádře a plášti Ceresu, která probíhala zhruba v prvních dvou miliardách let. Při konvekci stoupá teplejší materiál vzhůru v podobě tzv. konvektivních cel, a po jejich okrajích klesá ochlazený materiál dolů. Po vyčerpání zdrojů tepla (radioaktivních izotopů) zhruba jednu miliardu let po vzniku velkoškálová konvekce ustala a zanechala na povrchu, nad vzestupnými proudy, utuhlé vrchoviny.  Konvekce se poté přesunula do svrchních částí pláště a konvektivní buňky se podstatně zmenšily - na velikost asi 50 až 100 km. Výsledkem tohoto procesu jsou mírně vyboulené dómy, které dodnes na povrchu vidíme.

Ukázka simulace velkoškálové konvekce z doby půl miliardy let (vlevo) a malých konvektivních cel v době 4 miliardy let (vpravo) po vzniku Ceresu Autor: B. J. Travis et al., LPSC2016
Ukázka simulace velkoškálové konvekce z doby půl miliardy let (vlevo) a malých konvektivních cel v době 4 miliardy let (vpravo) po vzniku Ceresu
Autor: B. J. Travis et al., LPSC2016
V závěru tohoto dílu si „posvítíme“ na útvar, který se pro Ceres stal již ikonou – kuželovitou horu Ahuna mons. Základna hory má rozměry 21 × 13 km a výška je asi 4,5 km nad okolním terénem. Ze spektroskopického měření se ukazuje, že svahy obsahují mnohem více karbonátů v porovnání s ostatními dvěma hlavními typy minerálů obsažených v povrchové vrstvě Ceresu (viz druhý díl seriálu). Vrcholové plato je hodně hrbolaté a tudíž je obtížné na něm identifikovat impaktní krátery, ale z počtů těch, které identifikovány byly, vychází stáří tohoto útvaru na asi 10 milionů let. Svahy hory mají sklon 30 až 40° a jsou pokryty světlými a tmavými pruhy, které jsou interpretovány jako rýhy po sesuvech balvanů. Vrchol hory, tvořený platem o rozměrech asi 5 × 8 km, je mírně propadlý směrem doprostřed. Poměrně strmé svahy hory a absence projevů tečení materiálu naznačují, že hora je tvořena silně viskózním materiálem. Útvary s morfologií jako Ahuna mons vznikají při extruzivním (na povrch se vylévajícím) vulkanizmu, kdy viskozita materiálu s jeho postupným chladnutím roste. Vzhledem k celkovému složení Ceresu zde tedy jistě hrála roli voda smíšená s kamenným materiálem, protlačující se skrz kůru Ceresu a na povrchu tuhnoucí. Jak bylo zmíněno výše, nachází se Ahuna Mons na okraji jednoho z dómů, u nichž se předpokládá vznik intruzivním vulkanismem, při němž se magma – v našem případě tedy směs vody a jílů – nedostává až na povrch. Je možné, že v tomto jednom místě se mu to ovšem podařilo.

Zdroje a doporučené odkazy:
[1] Lunar and Planetary Science Conference 2016



Seriál

  1. Ceres po roce se sondou Dawn – 1. díl
  2. Ceres po roce se sondou Dawn – 2. díl
  3. Ceres po roce se sondou Dawn – 3. díl
  4. Ceres po roce se sondou Dawn – 4. díl


O autorovi

Štítky: Ceres, Dawn


35. vesmírný týden 2025

35. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 25. 8. do 31. 8. 2025. Měsíc po novu se koncem týdne objeví na večerní obloze. Ráno můžeme pozorovat všechny planety kromě Marsu. Aktivita Slunce se možná zvýší. SpaceX se chystá k 10. testu Super Heavy Starship. První stupeň Falconu 9 se chystá k 30. znovupoužití. Tato raketa má letos za sebou již více než 100 startů a v uplynulém týdnu vynesla i vojenský miniraketoplán X-37b a nákladní loď Dragon na misi CRS-33 k ISS. Před 50 lety zazářila v souhvězdí Labutě poměrně jasná nová hvězda, nova V1500 Cygni.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

IC 1396 Sloní chobot

IC 1396 je veľká emisná hmlovina v súhvezdí Cefea. Nachádza sa pod spojnicou hviezd alfa a zéta Cephei a je v nej aj premenná hviezda Erakis. Hmlovina zaberá oblasť s priemerom niekoľko stoviek svetelných rokov a jej svetlo k nám letí asi 3 000 rokov. Na nočnej oblohe je jej zdanlivý priemer desaťkrát väčší ako priemer Mesiaca v splne, čo je 170´ (5°). Má celkovú magnitúdu 3,0, ale je taká roztiahnutá, že voľným okom nemáme šancu ju vidieť. Hmotnosť hmloviny je odhadovaná na 12 000 hmotností Slnka. Hmlovinu vzbudzuje k žiareniu najmä veľmi hmotná a veľmi mladá hviezda HD 206267 v strede oblasti. Hviezdu obklopujú ionizované mraky vytvárajúce okolo nej vo vzdialenosti 80 až 130 svetelných rokov prstencový útvar. Sú to zvyšky molekulárneho mraku, z ktorého sa zrodila hviezda HD 206267 a ďalšie hviezdy v tejto oblasti, ktoré spolu tvoria hviezdokopu s označením Tr37. Ďalej od centrálnej hviezdy sú pásma tmavého a chladného materiálu. Známou časťou hmloviny je obrovský tmavý molekulárny mrak pomenovaný hmlovina Sloní chobot. Jej tvar vymodeloval hviezdny vietor z HD 206267. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 65x120sec. R, 63x120sec. G, 52x120sec. B, 120x60sec. L, 186x600sec Halpha, 112x600sec.+18x900sec. O3, 144x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 9.6. až 23.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »