Úvodní strana  >  Články  >  Sluneční soustava  >  Jádro planety Jupiter může být větší

Jádro planety Jupiter může být větší

Jádro Jupiteru je dvakrát hmotnější.
Jádro Jupiteru je dvakrát hmotnější.
Nové počítačové simulace vedou k závěru, že kamenné jádro Jupiteru, obklopené ledem, může být více než dvakrát hmotnější, než se dříve předpokládalo.

"Provedli jsme počítačové simulace chování směsi vodíku a hélia při vysokém tlaku a teplotě, tj. za podmínek, jaké existují v nitru planety Jupiter. Laboratorní experimenty nemohou v žádném případě dosáhnout takovýchto extrémních tlaků," říká profesor Burkhard Militzer (University of California, Berkeley), který počítal vlastnosti vodíku a hélia pro různou teplotu, hustotu a tlak v různých vrstvách od povrchu planety až do jejího středu.

V kombinaci se známými údaji o průměru, hmotnosti, povrchové teplotě, gravitaci a zploštění planety použil spoluautor studie William Hubbard (Lunar and Planetary Laboratory, University of Arizona) tato teoretická data k vypracování nového modelu stavby vnitřních oblastí planety Jupiter.

Z nového modelu vyplývá, že jádro uvnitř planety Jupiter má dvakrát větší hmotnost, než se doposud předpokládalo. Jeho hmotnost se nyní odhaduje na 14 až 18 hmotností Země, což odpovídá jedné dvacetině celkové hmotnosti Jupiteru. Uvnitř kamenného jádra se nachází ještě kovy, především železo a nikl. Dosavadní modely předpokládaly přítomnost mnohem menšího jádra pouze o hmotnosti 7krát větší než hmotnost Země nebo dokonce se uvažovalo o tom, že Jupiter žádné jádro nemá. Počítačové simulace také napovídají, že jádro se skládá v pořadí od středu z vrstvy kovů, kamene a ledu, tvořeného zmrzlým metanem, čpavkem a vodou, zatímco v atmosféře převládá ponejvíce vodík a hélium.

"Naše simulace naznačují přítomnost velkého kamenného objektu v centru planety, obklopeného vrstvou ledu a téměř žádný led v jiných částech planety," říká Militzer. "Jedná se o zcela odlišné závěry o vnitřní struktuře Jupiteru, než uváděly dosavadní modely, které předpokládaly relativně malé nebo téměř žádné jádro a přítomnost směsi různých ledů v různých částech atmosféry."

Burkhard Militzer to vysvětluje tak, že vodík pozvolna mění své skupenství z plynné fáze ve vnějších vrstvách atmosféry až po kovový vodík hluboko v nitru planety, který má dobrou elektrickou vodivost, což umožňuje vznik silného magnetického pole Jupiteru.

Výsledky simulací pro jádro Jupiteru jsou v souladu s modely jader zbývajících obřích planet, jako jsou Saturn, Uran a Neptun. Planety Uran a Neptun jsou známy jako ledoví obři, neboť se zdá, že rovněž mají kamenné jádro obklopené zmrzlým vodíkem a héliem, avšak bez tak velké plynné obálky, jakou mají Jupiter a Saturn. Podle nového modelu planety Jupiter je led soustředěn ve vnější vrstvě jejího jádra, zatímco pouze malé množství (kolem 1 %) je součástí plynného vodíku a hélia, který představuje 95 % celkové hmotnosti planety.

Nový model podporuje představu, že Jupiter a další plynné planety vznikaly kolizemi malých kamenných těles, které se spojovaly a vytvořily jádro, jež si následně gravitačně zachytilo rozsáhlou atmosféru z vodíku a hélia v důsledku vlastní přitažlivosti. "V souladu s akrečním modelem vzniku jádra, když se původní planetární mlhovina ochladila, vzniklé planetesimály se navzájem srážely a spojovaly dohromady, což vedlo k vytvoření planetárních jader," říká Militzer. "Pokud je to pravda, pak z toho vyplývá, že planety mají velká jádra, jak je to názorné z provedených počítačových simulací. Je mnohem obtížnější vysvětlit vznik planety s malým jádrem."

Uskutečněné simulace také předpovídají, že různé oblasti nitra planety rotují rozdílnou rychlostí. Jupiter může být považován za sadu koncentrických válců, otáčejících se kolem rotační osy planety. Vnější válce - v rovníkových oblastech - rotují rychleji než vnitřní válce, což se podobá způsobu, jakým rotuje Slunce. Informace, které by měla získat kosmická sonda Juno (start v roce 2011, přílet k Jupiteru v roce 2016), by měly ověřit předcházející předpoklady, vyplývající z počítačových simulací.

Tým odborníků plánuje rovněž využití nového počítačového modelu k určení charakteru jader ostatních obřích planet a vypátrat tak počáteční podmínky formování planet ve vnějších oblastech Sluneční soustavy.

Zdroj: astronomynow
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »