Úvodní strana  >  Články  >  Sluneční soustava  >  Magnetické pole Slunce je 10× silnější, než se předpokládalo

Magnetické pole Slunce je 10× silnější, než se předpokládalo

Projevy sluneční činnosti
Autor: Queen’s University Belfast

Magnetické pole Slunce v oblasti slunečních erupcí je 10× silnější, než astronomové doposud předpokládali. Vyplývá to z nových výzkumů uskutečněných na Queen's University Belfast a Aberystwyth University. Nový objev učinil David Kuridze, odborný pracovník na Aberystwyth University. Kuridze zahájil výzkum na Queen's University Belfast a dokončil jej, když v roce 2017 přešel na Aberystwyth University. Je předním odborníkem na využití pozemních dalekohledů ke studiu sluneční koróny – jasné světelné záře kolem Slunce během úplného zatmění.

Při práci na švédském dalekohledu o průměru 1 metr (Swedish 1-m Solar Telescope), Roque de los Muchachos Observatory, La Palma, Kanárské ostrovy, David Kuridze studoval mimořádně silnou sluneční erupci, ke které došlo 10. 9. 2017 v blízkosti slunečního povrchu.

Kombinace příznivých pozorovacích podmínek a potřebná dávka štěstí umožnila týmu vědců určit intenzitu magnetického pole v erupci s nebývalou přesností. Astronomové se domnívají, že toto zjištění má potenciál změnit naše poznatky o procesech, které nastávají ve sluneční atmosféře. Když o objevu hovořil David Kuridze, řekl: „Všechno, co se děje ve vnější atmosféře Slunce, je ovlivňováno magnetickým polem. Avšak bohužel máme k dispozici velmi málo měření jeho intenzity a prostorových charakteristik.“

A David Kuridze dodává: „To jsou rozhodující parametry, nejdůležitější pro fyziku sluneční koróny. Je to trochu podobné snahám porozumět zemskému klimatu bez toho, aniž bychom byli schopni měřit teplotu v různých geografických polohách. Je to vůbec poprvé, kdy jsme byli schopni přesně změřit magnetické pole koronální smyček – základních stavebních bloků magnetické koróny – s tak vysokou přesností.“

Při průměru Slunce 1 396 000 kilometrů (109 průměrů Země) a jeho vzdálenosti od naší planety 150 000 000 kilometrů sahá sluneční koróna milióny kilometrů od slunečního povrchu. Sluneční erupce se objevují jako jasné záblesky a vyskytují se v případě, kdy magnetická energie, která byla součástí sluneční atmosféry, je zprudka uvolněna.

Až doposud úspěšnému měření magnetických polí překážel slabý signál přicházející ze sluneční atmosféry na Zemi a přinášející informaci o magnetickém poli, a také omezení v dostupném přístrojovém vybavení.

Erupce jsou náhlá zjasnění ve fotosféře a chromosféře doprovázená výrazným uvolněním hmoty a energie. Může dojít až k odtržení oblaku plazmatu se zamrzlým magnetickým polem, který putuje Sluneční soustavou (tzv. koronální výron hmoty). Zachytí-li tento oblak magnetosféra naší Země, dojde k výrazným polárním zářím a magnetickým bouřím.

V průběhu desetidenní periody v září 2017 David Kuridze studoval aktivní oblast na povrchu Slunce, o které astronomové věděli, že může být obzvláště nestálá. Nicméně použité dalekohledy se mohly zaměřit pouze na 1 % povrchu Slunce v daný okamžik. David Kuridze se zaměřil zcela přesně na tu správnou oblast ve správný okamžik, kdy došlo ke sluneční erupci.

Tyto sluneční erupce mohou vést k bouřím, které – pokud zasáhnou Zemi – vytvářejí silné polární záře. Mohou rovněž poškodit telekomunikační družice, satelity navigační soustavy GPS a další umělá tělesa na oběžné dráze kolem Země, ale také způsobit poruchy pozemských rozvodných soustav.

Profesor Michail Mathioudakis ze School of Mathematics and Physics, Queen's University Belfast, který také pracoval na projektu, k tomu dodává: „Toto je jedinečný soubor pozorování, který vůbec poprvé poskytnul detailní mapu magnetických polí v koronální smyčce. Těchto velmi hodnotných závěrů bylo dosaženo v důsledku obětavosti a vytrvalosti vědců, kteří plánovali a vykonávali pozorování. Metodika použitá v této práci a samotné výsledky otevřou novou cestu při výzkumu sluneční koróny.“

Zdroje a doporučené odkazy:
[1] phys.org
[2] qub.ac.uk

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Magnetické pole Slunce, Sluneční erupce


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »