Úvodní strana  >  Články  >  Vzdálený vesmír  >  Aktivní galaxie ukazují na novou fyziku rozpínání vesmíru

Aktivní galaxie ukazují na novou fyziku rozpínání vesmíru

Určování vlivu temné energie na rozpínání vesmíru pomocí kvasarů
Autor: NASA/CXC/Univ. of Florence/G.Risaliti & E.Lusso

Z nové studie vzniklé na základě dat z kosmické observatoře NASA s názvem Chandra X-ray Observatory a astronomické družice XMM-Newton Evropské kosmické agentury ESA vyplývá, že se temná energie měnila v průběhu kosmického věku. Umělecká ilustrace v úvodu článku pomáhá vysvětlit, jak astronomové vypátrali účinky temné energie v období asi jedné miliardy roků po Velkém třesku na základě určení vzdálenosti kvasarů – rychle rostoucích černých děr, které svítí mimořádně jasně. Nové výsledky ukázaly, že vliv temné energie na rozpínání vesmíru v jeho mladém věku byl jiný než dnes.

Rychlost rozpínání vesmíru označovaná jako Hubbleova konstanta byla v poslední době neuvěřitelně zpřesněna. Každá nová zkouška odlišnými metodami vede k jejímu zpřesnění. Nová data z evropské družice Planck, která měřila mikrovlnné kosmické pozadí, vedla k hodnotě 67,4 kilometrů za sekundu na megaparsek (km/s/Mpc) s chybou menší než 1 %.

Jiné metody typicky zahrnují použití „standardních svíček“ – objektů se známou svítivostí, jako jsou například proměnné hvězdy známé jako cefeidy či supernovy typu Ia – z jejichž pozorované jasnosti může být vypočítána jejich vzdálenost.

V posledních letech vedly výpočty Hubbleovy konstanty na základě proměnných hvězd typu cefeid k hodnotě 73,5 km/s/Mpc. Avšak před několika lety si astronomové uvědomili, že vzdálenosti k jiným objektům mohou být určeny s mnohem větší přesností pomoci jiných „svíček“. Jedná se o kvasary společně s jejich supermasivními černými děrami.

Temná energie byla objevena zhruba před 20 lety na základě určení vzdáleností explodujících hvězd nazvaných supernovy. Tato substance je navrhovaný druh síly či energie, která prostupuje celý vesmír a způsobuje jeho zrychlující se rozpínání. Použitím metody pozorování kvasarů vědci vystopovali účinky temné energie až do období zhruba před 9 miliardami roků.

Poslední závěry pramení z vyvinuté nové metody určení vzdáleností 1 598 kvasarů, která umožnila astronomům změřit účinky temné energie od raného věku vesmíru až do současnosti. Dva z nejvzdálenějších kvasarů studovaných družicí Chandra jsou znázorněny na vložených obrázcích v úvodu článku.

Tři metody k určení Hubbleovy konstanty Autor: NASA, ESA, and A. Feild (STScI)
Tři metody k určení Hubbleovy konstanty
Autor: NASA, ESA, and A. Feild (STScI)
Nová technika využívá data z oboru ultrafialového a rentgenového záření k odhadu vzdáleností kvasarů. V kvasarech – uvnitř disku hmoty kolem supermasivní černé díry v centrech galaxií – vzniká ultrafialové záření (na ilustraci znázorněno modrou barvou). Některé z fotonů UV záření se srážejí s elektrony v oblaku horkého plynu (na ilustraci znázorněny žlutě) nad a pod diskem, a tyto kolize mohou zvýšit energii UV záření až na úroveň rentgenové emise. Interakce vede ke korelaci mezi množstvím pozorovaného UV a X záření. Tato souvztažnost závisí na svítivosti kvasaru, na množství uvolňovaného záření.

Použitím této metody se z kvasarů staly standardní svíčky, jak je naznačeno na publikované ilustraci. Jakmile je známá svítivost, vzdálenost kvasarů může být vypočítána z množství pozorovaného záření.

Astronomové zpracovali data o ultrafialovém záření pro 1 598 kvasarů za účelem odvození vztahu mezi UV zářením a rentgenovými paprsky a vzdáleností kvasarů. Následně tyto informace využili ke studiu rychlosti rozpínání vesmíru zpět v čase do období velmi raného vesmíru. Objevili důkazy, že množství temné energie narůstá s časem.

Protože se jedná o novou metodu, astronomové učinili další kroky, aby dokázali, že tato metoda poskytuje spolehlivé výsledky. Ukázali, že závěry tohoto postupu se vyrovnají měřením pomocí supernov za posledních 9 miliard roků, což jim dává jistotu, že výsledky jsou věrohodné až do raného období vesmíru. Vědci rovněž věnovali velkou pozornost výběru kvasarů za účelem minimalizace statistických chyb a aby se vyvarovali systematických chyb, které mohou záviset na vzdálenosti Země od pozorovaného objektu.

Článek s těmito závěry publikovali 28. 1. 2019 Guido Risaliti (University of Florence, Itálie) a Elisabeta Lusso (Durham University, Velká Británie) v časopise Nature Astronomy. Online je dostupný na https://arxiv.org/abs/1811.02590.

Zdroje a doporučené odkazy:
[1] nasa.gov
[2] sciencealert.com
[3] chandra.harvard.edu

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Hubbleova konstanta, Rozpínání vesmíru, Kvasary


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »