Úvodní strana  >  Články  >  Vzdálený vesmír  >  Odhalí nová teorie tajemství kosmického záření?

Odhalí nová teorie tajemství kosmického záření?

rázová tzv. terminaení vlna (
rázová tzv. terminaení vlna ("termination shock")
Astrofyzikové předpokládali, že Voyager 1 konečně odhalí tajemný zdroj anomálního kosmického záření. Místo toho se ukázalo, že předpoklady posledních 20. let jsou chybné.

Když Voyager 1 v prosinci 2004 opustil heliosféru a putuje mezihvězdným prostorem - přelétl hranici rázové vlny, tzv. terminační vlnu ("termination shock"). A astrofyzikové předpokládali, že konečně odhalí zdroje anomálního kosmického záření. Za původce tohoto kosmické záření, které patřící mezi nejaktivnější částicové záření ve Sluneční soustavě, je považována hranice rázové vlny. Zde na okraji Sluneční soustavy se sluneční vítr neočekávaně zpomalí. Záhada se však nevyřešila a namísto toho data z Voyager ukázala, že prognózy během posledních 20 let jsou chybné.

Nová teorie, kterou publikovali 17. únoru 2006 v Geophysical Research Letters Dr. David McComas (SwRI, Southwest Research Institute, San Antonio, Texas) a Dr. Nathan Schwadron (Boston University, Massachusetts), vysvětluje, proč téměř úplně chybí anomální kosmické záření na přední straně rázové vlny, tam kde Voyager "hranici překračoval". Zatímco dřívější modely považovaly terminační vlnu za nedůležitou, podle nové teorie je její tvar hlavním faktorem, kde a jak částice získávají energii.

McComas a Schwadron jsou přesvědčení, že pochopení role, jakou hraje terminační vlna jako zdroj energie pro anomální kosmické záření, povede k porozumění vlivu profilu rázové vlny pro získávání energie částicového záření ve vesmíru. Rázová vlna dodává tomuto nebezpečnému částicovému záření energii v mnoha formách. A představuje významné riziko pro astronauty na kosmických misích, zejména v budoucnosti při plánovaných letech s lidskou posádkou k Měsíci a Marsu.

"Podle modelů bychom měli vidět zdroj energetického spektra anomálního kosmického záření v terminační vlně," říká McComas, hlavní výkonný ředitel oddělení kosmické vědy a techniky SwRI. "Byli jsme si dost jistí, věděli jsme, co bychom měli vidět, ale když jsme se tam dostali, nebylo tam to, co jsme očekávali a nebyl tam zřetelný zdroj anomálního kosmického záření."

Vědci si nebyli nejisti, kde právě končí rázová vlna, ale věděli, že tam musí být "porucha" magnetického pole, která sníží rychlost plazmy (slunečního větru) a dalších charakteristik. "Je to podobné, jako při chůzi přes pole, kdy neznáte hranice pozemků," říká McComas. "O hranicích s konečnou platností víte, až uvidíte plot."

Tvar rázové vlny nebyl považovaný za důležitý, proto u většiny vědců měl kulový tvar, se spirálovitým magnetickým polem, které dovolovalo pronikat slunečnímu větru ven v jediném místě. Plazma slunečního větru s sebou nese i magnetické pole. Silokřivky jsou "ukotveny" ve Slunci, ale vlivem sluneční rotace se tento bod pohybuje a tvar meziplanetárního magnetického pole je spirálovitý.

McComas a Schwadron ukázali, že zrychlení anomálního kosmického záření může docela dobře vysvětlit reálný tvar rázové vlny. "Ve skutečnosti, terminační vlna nemůže být kulová, protože Sluneční soustava se v Galaxie pohybuje a vytváří tvar podobný spíše vejci," říká Schwadron. "Čelo rázové vlny je zploštělé v závislosti na rychlosti pohybu."

Vznik anomálního kosmického záření vyžaduje spojení s terminační vlnou (v bodě, kde je "propíchnuta" magnetickou silokřivkou) a schopnost pro aktivní částice pobývat blízko toho spojení asi rok. Použití nového modelu a jednoduchých výpočtů ukázalo, že částice tam mohou zůstat okolo 300 dnů, což je další důkaz správnosti modelu.

Voyager 1 nezjistil aktivní anomální kosmické záření, když přelétal terminační vlnou. "20 miliónů elektronvoltů u částic helia, což bylo méně než 10% toho, co bylo předpovězeno. Stejně jsme pozorovali jen 5% z očekávaných 4 miliónů elektronvoltů u částic kyslíku," říká McComas. "My jsme nebyli mimo o 5 nebo 10%, byli jsme mimo 10 a 20krát."

Nový model ukazuje, že částice mohou být opravdu urychleny na terminační vlně, ale ne na čele, kde ji Voyager přelétal. "Částice nemohou být urychleny až k nejvyšším energiím pokud se silokřivky nepřesunou ven a jejich "stopa" neustoupí zpět po stranách hranice rázové vlny," říká McComas. "Znamená to, že zdroj aktivního anomálního kosmického záření musí ležet na bocích rázové vlny."

Voyager 2 rovněž letí ven ze sluneční soustavy. Očekává se, že terminační vlnou projde během příštích 2-3 let, ale ve větší vzdálenosti od jejího čela. "Odpovědi by mohl poskytnout Voyager 2, protože by se měl pozorovat větší "skok" toku aktivních částic a větší spektrum anomálního kosmického záření, když bude prolétat terminační vlnou," říká Schwadron.

Sonda IBEX (Interstellar Boundary Explorer, NASA), jejíž start je naplánován na léto 2008, by měla jako první pořizovat globální snímky heliopauzy. Na rozdíl od Voyagerů k ní nepoletí, ale měření bude provádět z protáhlé oběžné dráhy kolem Země. Právě elipsa s velkou výstředností dovolí dělat citlivá měření, která nebude ovlivňovat zemská magnetosféra. Astronomové budou schopni globálně pozorovat interaktivní vlivy na čele, bocích i ohonu rázové vlny. Kombinací s daty z Voyagerů 1 a 2 tato pozorování poprvé umožní vědcům pochopit vzájemné ovlivňování Sluneční soustavy a Galaxie.

Schéma: rovníkový řez rázovou vlnou. Znázorňuje i přibližnou pozici kosmických sond Voyager 1 a 2. (Credit: Geophysical Research Letters)

Zdroj: www.sciencedaily.com
Převzato: Hvězdárna Valašské Meziříčí




O autorovi



49. vesmírný týden 2025

49. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 12. do 7. 12. 2025. Měsíc bude v úplňku, projde Plejádami a setká se s Jupiterem. Od setmění je nad jihem Saturn. Nízko na ranní obloze je Merkur. Velmi vysoká bude nyní aktivita Slunce. Uvidíme polární záře? Komety večer ruší Měsíc a ráno to brzy nebude lepší. Na Bajkonuru došlo k poškození jediné rampy sloužící pro mise lodí Sojuz a Progress k ISS. ESA na následující roky posílila rozpočet. Před 500 lety se narodil český astronom Tadeáš Hájek z Hájku.

Další informace »

Česká astrofotografie měsíce

Kométa C/2025 A6 Lemmon a Lomnický štít

Titul Česká astrofotografie měsíce za říjen 2025 obdržel snímek „Kométa C/2025 A6 Lemmon a Lomnický štít“, jehož autorem je astrofotograf Robert BarsaCitron je žlutý kyselý plod citroníku z druhu citrusovitých. Používá se nejen v potravinářství … A právě jméno tohoto plodu si vybrali naši

Další informace »

Poslední čtenářská fotografie

Kométa 3I/ATLAS

3I/ATLAS – medzihviezdna kométa na návšteve Medzihviezdna kométa 3I/ATLAS patrí medzi veľmi vzácnu skupinu objektov, o ktorých vieme, že do našej Slnečnej sústavy prileteli z iného hviezdneho systému. Pohybuje sa po silno hyperbolickej dráhe, takže ju pri ďalšom obehu už znovu neuvidíme – len raz preletí okolo Slnka a opäť zmizne do medzihviezdneho priestoru. Na zábere z ranných hodín 28. 11. 2025 dominuje zelenkastá kóma kométy v spodnej časti obrazu. Jemný prachový chvost sa rozlieva šikmo nahor medzi hviezdami, ktoré ostávajú ostré a nehybné – pekná pripomienka toho, že sledujeme rýchleho hosťa na pozadí vzdialeného hviezdneho poľa našej Galaxie. Aj keď 3I/ATLAS na oblohe nepatrí k najjasnejším kométam, možnosť zachytiť medzihviezdnu návštevníčku je výnimočná. Každý takýto objekt prináša jedinečný pohľad na materiál a históriu iných planetárnych systémov – a táto fotografia je malou “pamiatkou” na jej krátku zastávku v našej kozmickej „štvrti“. Už z voľby kompozície je jasné že som čakal trocha výraznejší chvost ???? Technické údaje: Vybavenie: SkyWatcher NEQ6Pro, GSO Newton 200/800 (200/600 F3) + Starizona Nexus 0.75×, Touptek ATR585M mono, AFW-M + Touptek LRGB filtre, Gemini EAF, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, PixInsight, Adobe Photoshop. Expozície: L 20x60s, RGB 12×90 s, master bias, flats, darks, darkflats. Gain 150, Offset 300. 28.11.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »