Úvodní strana  >  Články  >  Vzdálený vesmír  >  „Slavná“ černá díra opět ve středu pozornosti

„Slavná“ černá díra opět ve středu pozornosti

EHT (Event Horizon Telescope) - supermasivní černá díra v galaxii M87
Autor: EHT Collaboration

Titulní obrázek dnešního článku znáte asi všichni. Mediálním světem vloni v dubnu rezonovala historicky první fotografie černé díry. Ono historické pozorování provedla soustava pozemských radioteleskopů Event Horizon Telescope (EHT). Dnes ale nebude řeč o slavné fotografii z loňska, ale o výzkumu, který prováděla kosmická observatoř Chandra. Ta se zaměřila na horké výtrysky směřující z centra galaxie M87 v rentgenovém oboru elektromagnetického záření a přinesla nové zajímavé poznatky.

Astronomové použili kosmický teleskop Chandra, který opakovaně zaměřili právě na supermasivní černou díru v M87. Spatřili velmi zajímavé divadlo, při kterém černá díra urychlovala částice na rychlost větší než 99 % rychlosti světla. Černá díra v galaxii Messier 87 (zkráceně M87) má hmotnost 6,5 miliard Sluncí a našli bychom ji v souhvězdí Panny zhruba 55 milionů světelných let od Země. Tato černá díra dostala označení M87* a nyní má již havajské jméno Powehi.

Snímek galaxie M 87 pořízený Hubbleovým kosmickým dalekohledem odhalil polární výtrysk dosahující do vzdáleností kolem 5000 světelných let od jádra. Autor: Hubble/NASA
Snímek galaxie M 87 pořízený Hubbleovým kosmickým dalekohledem odhalil polární výtrysk dosahující do vzdáleností kolem 5000 světelných let od jádra.
Autor: Hubble/NASA
Už dlouhé roky astronomové sledovali záření z výtrysků vysokoenergetických částic, které urychlila černá díra. Vědci studovali tyto výtrysky ve všech částech elektromagnetického spektra – od radiových vln přes viditelné světlo až k rentgenovému záření. Nyní díky pozorováním kosmickou observatoří Chandra mohli výzkumníci spatřit části výtrysku, které se pohybují téměř rychlostí světla.

Je to vůbec poprvé, kdy se podařilo zaznamenat tak extrémní rychlost pomocí rentgenových dat,“ popisuje Ralph Kraft z Center of Astrophysics | Harvard & Smithsonian (CfA) v Cambridge, který představil objev na zasedání Americké astronomické společnosti v Honolulu a dodal: „Pro tato měření potřebujeme ostrý rentgenový zrak teleskopu Chandra.“ Když se hmota dostane dost blízko k černé díře, vstoupí do rotujícího útvaru, který se označuje jako akreční disk. Část materiálu z vnitřních částí akrečního disku skončí v černé díře, ale část z něj může být naopak vyvržena pryč ve formě přímého svazku – výtrysku – materiálu, který se šíří podél siločar magnetického pole. Jelikož jsou procesy pádu hmoty do černé díry nepravidelné, mají výtrysky podobu jakýchsi izolovaných svazků, které mohou být sledovány různými teleskopy.

Eliptická galaxie M87 v infračerveném oboru v podání Spitzerova dalekohledu Autor: NASA/JPL-Caltech/IPAC/Event Horizon Telescope Collaboration
Eliptická galaxie M87 v infračerveném oboru v podání Spitzerova dalekohledu
Autor: NASA/JPL-Caltech/IPAC/Event Horizon Telescope Collaboration
Pro aktuální objev použili vědci pozorování z let 2012 a 2017, aby sledovali pohyb dvou rentgenových uzlů obsažených ve výtrysku vzdálených zhruba 900 a 2500 světelných let od černé díry. Rentgenová data byla zprvu matoucí – svazek blíže k černé díře se měl podle údajů pohybovat 6,3× rychleji než je rychlost světla a a druhý pak měl být 2,4× rychlejší než světlo. „Jedním z neprolomitelných fyzikálních zákonů je, že se nic nemůže pohybovat rychleji než světlo,“ sděluje známou pravdu Brad Snios, spoluautor studie také ze CfA a dodává: „Neprolomili jsme zákony fyziky. Pouze jsme objevili příklad úžasného fenoménu, kterému se říká nadsvětlená rychlost (superluminal motion)“.

Nadsvětelnou rychlost zde pozorujeme proto, že objekt se pohybuje rychlostí velmi blízkou rychlosti světla ve směru, který je blízký úhlu našeho pohledu. Výtrysk cestuje prostorem skoro tak rychle, jak je světlo vyzařováno, což vytváří iluzi, že pohyb výtrysku je mnohem prudší, než je rychlost světla. V případě M87* míří výtrysk téměř naším směrem, což vysvětluje na první pohled nelogické údaje o změřené rychlosti.

Schéma komponent detektoru Chandra. Rentgenový teleskop o průměru 1,2 m má ohniskovou vzdálenost 10 metrů. Tvoří jej čtyři sady paraboloidně-hyperboloidních zrcadel o velikosti 0,85 m. Autor: NASA/CXC/NGST
Schéma komponent detektoru Chandra. Rentgenový teleskop o průměru 1,2 m má ohniskovou vzdálenost 10 metrů. Tvoří jej čtyři sady paraboloidně-hyperboloidních zrcadel o velikosti 0,85 m.
Autor: NASA/CXC/NGST

Astronomové už dříve pozorovali takový pohyb u M87* v radiových vlnách a viditelné části spektra, ale tato pozorování nebyla schopna definitivně potvrdit, že se hmota výtrysků pohybuje rychlostí velmi blízkou rychlosti světla. Nebylo jisté, zda pohybující se struktury nejsou jen rázovou vlnou, tedy jakousi obdobou sonického třesku u nadzvukového letadla.

Nejnovější výsledky ukazují, že rentgenové paprsky se umí chovat jako přesné měřidlo kosmických rychlostí. Tým vědců pozoroval útvar pohybující se již výše vysvětlenou zdánlivou rychlostí 6,3 násobku rychlosti světla mezi roky 2012 a 2017 ztratil 70 % jasu. Tento útlum byl pravděpodobně způsoben tím, jak částice ztrácely energii vyzařováním, které bylo vynuceno jejich spirálovým pohybem kolem siločar magnetického pole. Aby bylo něco takového možné, musíte v obou případech sledovat rentgenové paprsky z té samé částice a nikoliv pohybující se vlnu.

Zjasnění rentgenového záření ve výtrysku galaxie M87
Zjasnění rentgenového záření ve výtrysku galaxie M87

Naše pozorování dává zatím nejsilnější důkaz o tom, že částice ve výtrysku z M87* skutečně cestují rychlostí blízkou absolutnímu kosmickému limitu,“ doplňuje Snios. Aby toho nebylo málo, tak pozorování z kosmické observatoře Chandra jsou skvělým doplňkem údajů z již zmíněného pozorování pole radioteleskopů EHT. Velikost prstence kolem černé díry, který spatřil EHT a jehož fotka pak oběhla internet, je zhruba stomilionkrát menší, než výtrysk pozorovaný teleskopem Chandra.

A je tu ještě jeden rozdíl – EHT pozoroval M87* během šesti dní v dubnu 2017, čímž vytvořil aktuální snímek černé díry. Teleskop Chandra pozoroval vyvržený materiál, který byl na svou mimořádnou cestu vypuzen z černé díry před stovkami, možná tisícovkami let. „Řekl bych, že EHT nám poskytl detailní pohled na raketomet,“ dává neobvyklé přirovnání Paul Nulsen, další spoluautor studie, aby vzápětí vše vysvětlil: „No a teleskop Chandra nám zase ukázal, jak ta vypálená raketa letí.

Převzato z Kosmonautix.cz.

Zdroje a doporučené odkazy:
[1] NASA
[2] Kosmonautix.cz



O autorovi

Dušan Majer

Dušan Majer

Narodil se roku 1987 v Jihlavě, kde bydlí po celý život. Po maturitě na všeobecném soukromém gymnáziu AD FONTES vstoupil do regionální televize, kde několik let pracoval jako redaktor. Ve volném čase se věnoval kosmonautice. Postupně zjistil, že jej baví o tomto tématu nejen číst, ale že mnohem zajímavější je předávat tyto informace dál. Na podzim roku 2009 udělal dva velké kroky – jednak na internetu zveřejnil své první video o kosmonautice a navíc založil diskusní fórum o tomto oboru. Postupem času fórum rozrostlo o další služby a vznikl specializovaný zpravodajský portál kosmonautix.cz, který informuje o dění v kosmonautice. Rozběhla se i jeho tvorba videí na portálu Stream.cz. Pořad Dobývání vesmíru má sledovanost v desítkách tisíc a nasbíral již několik cen od Akademie věd za popularizaci vědy.

Štítky: NASA, Chandra X-ray Observatory, M87, Černá díra


48. vesmírný týden 2025

48. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 24. 11. do 30. 11. 2025. Měsíc bude v první čtvrtiNa večerní obloze je dobře vidět Saturn, během noci je vysoko Jupiter. Setkání Venuše s Merkurem na ranní obloze bude pro pozorovatele obtížné vidět. Aktivita Slunce je nyní zatím nízká. SpaceX čelí problému při testech Super Heavy, Blue Origin mezitím připravuje lander pro Artemis a vylepšuje raketu New Glenn. ESA má vrcholný meeting, na němž se proberou plány pro příští roky. K ISS startuje Sojuz MS-28 s tříčlennou posádkou. Před 110 lety byla publikována Obecná teorie relativity Alberta Einsteina.

Další informace »

Česká astrofotografie měsíce

Kométa C/2025 A6 Lemmon a Lomnický štít

Titul Česká astrofotografie měsíce za říjen 2025 obdržel snímek „Kométa C/2025 A6 Lemmon a Lomnický štít“, jehož autorem je astrofotograf Robert BarsaCitron je žlutý kyselý plod citroníku z druhu citrusovitých. Používá se nejen v potravinářství … A právě jméno tohoto plodu si vybrali naši

Další informace »

Poslední čtenářská fotografie

Kométa 3I/ATLAS

3I/ATLAS – medzihviezdna kométa na návšteve Medzihviezdna kométa 3I/ATLAS patrí medzi veľmi vzácnu skupinu objektov, o ktorých vieme, že do našej Slnečnej sústavy prileteli z iného hviezdneho systému. Pohybuje sa po silno hyperbolickej dráhe, takže ju pri ďalšom obehu už znovu neuvidíme – len raz preletí okolo Slnka a opäť zmizne do medzihviezdneho priestoru. Na zábere z ranných hodín 28. 11. 2025 dominuje zelenkastá kóma kométy v spodnej časti obrazu. Jemný prachový chvost sa rozlieva šikmo nahor medzi hviezdami, ktoré ostávajú ostré a nehybné – pekná pripomienka toho, že sledujeme rýchleho hosťa na pozadí vzdialeného hviezdneho poľa našej Galaxie. Aj keď 3I/ATLAS na oblohe nepatrí k najjasnejším kométam, možnosť zachytiť medzihviezdnu návštevníčku je výnimočná. Každý takýto objekt prináša jedinečný pohľad na materiál a históriu iných planetárnych systémov – a táto fotografia je malou “pamiatkou” na jej krátku zastávku v našej kozmickej „štvrti“. Už z voľby kompozície je jasné že som čakal trocha výraznejší chvost ???? Technické údaje: Vybavenie: SkyWatcher NEQ6Pro, GSO Newton 200/800 (200/600 F3) + Starizona Nexus 0.75×, Touptek ATR585M mono, AFW-M + Touptek LRGB filtre, Gemini EAF, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, PixInsight, Adobe Photoshop. Expozície: L 20x60s, RGB 12×90 s, master bias, flats, darks, darkflats. Gain 150, Offset 300. 28.11.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »