Úvodní strana  >  Články  >  Exoplanety  >  Budeme hledat fialové exoplanety?

Budeme hledat fialové exoplanety?

Vědci z Cornellovy univerzity navrhují, že signály fialových bakterií, kterým se daří v různých podmínkách a které využívají infračervené světlo, by mohly naznačovat mimozemský život na exoplanetách.
Autor: SciTechDaily.com

Při pátrání po životě mimo naši planetu se nemusíme zaměřovat jen na tradiční zelenou barvu, která je běžně spojována s pozemským životem. Planeta podobná Zemi, která obíhá kolem jiné hvězdy, může vypadat jinak a může být pokryta bakteriemi, které k fotosyntéze využívají neviditelné infračervené záření. Astrobiologové z Cornellovy a Minnesotské univerzity za tímto účelem charakterizovali odrazová spektra souboru sirných a dalších fialových bakterií.

Se životem na Zemi si nejvíce spojujeme zelenou barvu, kterou vidíme skoro všude v rostlinné říši – od pokojových rostlin a zahrad až po pole a lesy, kde podmínky umožnily vývoj organismů, které provádějí fotosyntézu produkující kyslík pomocí zeleného barviva – chlorofylu.

Planeta podobná Zemi obíhající kolem jiné hvězdy by však mohla vypadat zcela jinak: mohla by být pokrytá bakteriemi, které přijímají jen málo nebo vůbec žádné viditelné světlo a nepotřebují ani kyslík, podobně jako je tomu v některých prostředích na Zemi. Místo toho by mohly využívat k fotosyntéze neviditelné infračervené záření.

Mnoho takových bakterií na Zemi obsahuje místo zelené barvy fialové pigmenty, a pokud by tyto bakterie na exoplanetách převládaly, vytvářely by charakteristický „světelný otisk“, který by byl detekovatelný pozemními i vesmírnými dalekohledy příští generace.

Fialové bakterie mohou prosperovat v širokém spektru podmínek, což z nich činí jednoho z hlavních uchazečů o život, který by mohl dominovat na různých světech,“ uvedla Lígia Fonseca Coelho, postdoktorandka Institutu Carla Sagana (CSI) a první autorka článku Purple is the New Green: Biopigments and Spectra of Earth-like Purple Worlds.

Potřebujeme vytvořit databázi známek života, abychom se ujistili, že naše teleskopy nepřehlédnou život, pokud náhodou nevypadá přesně jako to, s čím se setkáváme každý den kolem nás,“ dodala docentka astronomie Lisa Kalteneggerová, spoluautorka článku a ředitelka CSI.

Na základě života na Zemi vědci katalogizují barvy a chemické znaky, které by v odraženém světle exoplanety mohly odpovídat různým organismům a minerálům. Autor: Ryan Young, Cornell University
Na základě života na Zemi vědci katalogizují barvy a chemické znaky, které by v odraženém světle exoplanety mohly odpovídat různým organismům a minerálům.
Autor: Ryan Young, Cornell University
Pro účely studie autoři shromáždili a vypěstovali vzorky více než 20 purpurových sirných a nesirných bakterií, které se mohou vyskytovat v různých prostředích, od mělkých vod, pobřeží a bažin až po hlubokomořské hydrotermální průduchy.

Bakterie, které se souhrnně označují jako fialové, mají ve skutečnosti celou škálu barev včetně žluté, oranžové, hnědé a červené, a to díky pigmentům příbuzným těm, které dělají rajčata červená a mrkev oranžovou. Daří se jim v prostředí s nízkoenergetickým červeným nebo infračerveným světlem pomocí jednodušších systémů fotosyntézy využívajících formy chlorofylu, které absorbují infračervené světlo a nevytvářejí kyslík. Je pravděpodobné, že na rané Zemi tyto bakterie převládaly ještě před nástupem fotosyntézy rostlinného typu a mohly by být obzvláště vhodné pro exoplanety, které obíhají kolem chladnějších červených trpaslíků – nejběžnějšího typu hvězd v naší Galaxii.

Na Zemi se jim i dnes v určitých prostředích daří. Pokud by jim nekonkurovaly zelené rostliny, řasy a jiné bakterie, mohly by jim červené hvězdy poskytnout nejpříznivější podmínky pro fotosyntézu.

Detekce „bledě fialové tečky“ v jiné sluneční soustavě by vyvolala intenzivní pozorování planety, aby se tím vyloučily jiné barevné zdroje, například barevné minerály, které CSI rovněž katalogizuje.

Právě se nám otevírají oči pro tyto fascinující světy kolem nás,“ řekla Lisa Kalteneggerová. „Fialové bakterie mohou přežívat a prospívat v tak rozmanitých podmínkách, že je snadné si představit, že na mnoha různých světech může být fialová právě novou zelenou.“

Práce týmu vyšla v časopise Monthly Notices of the Royal Astronomical Society.

Zdroje a doporučené odkazy:
[1] www.sci.news
[2] scitechdaily.com



O autorovi

Pavel Hrdlička

Pavel Hrdlička

Vystudoval chemii na pražské VŠCHT, ale už během studia zjistil, že ho víc baví počítače než atomy. Před 30 lety se proto začal věnovat aplikačnímu softwaru. Začátkem 21. století působil jako redaktor, pak se vrátil k softwarové podpoře pro německý T-Systems a nakonec modeloval znečištění ovzduší v Českém hydrometeorologickém ústavu. Přispívá také do Wikipedie, kde se snaží přidávat fotky, vylepšovat články o biatlonu, hlodavcích a… o astronomii.

Štítky: Markery života, Život na exoplanetách


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »