Úvodní strana  >  Články  >  Hvězdy  >  Jak vznikají modří veleobři?
Jan Herzig Vytisknout článek

Jak vznikají modří veleobři?

Dvojhvězdný systém složený z rudého obra a jeho mladšího průvodce, který se může srazit a dát vzniknout modrému veleobru
Autor: Casey Reed, NASA

Modří veleobři patří mezi největší, nejjasnější a nejteplejší hvězdy, které lze vůbec ve vesmíru najít. Přestože jsou pozorovány velmi běžně, astronomové již několik desetiletí debatují o tom, jak tato ohromná tělesa mohou vznikat. Nový výzkum vedený Kanárským astrofyzikálním institutem předkládá další možnou hypotézu jejich původu.

Modří veleobři spektrální třídy B, kterých se tento výzkum specificky týkal, jsou velmi zářivé a horké hvězdy. Jejich zářivý výkon je nejméně desettisíckrát větší než ten sluneční, teplota dvakrát až pětkrát vyšší a hmotnost asi šestnáctkrát až čtyřicetkrát větší než hmotnost Slunce. Díky své obrovské hmotnosti však mají poměrně krátkou životnost. Typicky je tedy nalezneme v mladých kosmických strukturách, jako jsou otevřené hvězdokupy, nepravidelné galaxie či ramena spirálních galaxií, kde se tvoří nové hvězdy. Ve starých objektech, jako jsou eliptické galaxie či kulové hvězdokupy, se naopak skoro vůbec nevyskytují.

Kvůli jejich krátké životnosti bychom jich ve vesmíru však neměli pozorovat příliš mnoho. Tak tomu však není a astronomové je naopak nalézají v poměrně hojném počtu. Proč tomu tak je, jak je možné, že jich vzniká tolik?

Důležité vodítko k jejich původu tkví v tom, že drtivá většina hvězd tohoto typu je samostatná, tedy nemají žádné gravitačně vázané společníky. Jinak je velká část hvězd ve vesmíru vázána ve dvojhvězdných a vícenásobných hvězdných systémech a obzvlášť to platí právě pro mladé horké hvězdy. To navádí vědce k hypotéze, že modří veleobři vznikají při srážkách hmotných dvojhvězdných systémů.

Astronomové nyní analyzovali data o celkem 59 hvězdách tohoto typu z jedné ze satelitních galaxií Mléčné dráhy, Velkého Magellanova mračna. Tato data následně porovnávali s novými počítačovými modely a došli k závěru, že dobře korespondují s tím, že většina modrých veleobrů vzniká právě při srážkách hmotných dvojhvězd.

Hertzsprungův-Russellův diagram se zvýrazněnou polohou modrých veleobrů Autor: Ron Miller / Stocktrek Images / Getty Images
Hertzsprungův-Russellův diagram se zvýrazněnou polohou modrých veleobrů
Autor: Ron Miller / Stocktrek Images / Getty Images
„Simulovali jsme srážky vyvinutých obřích hvězd se svými menšími hvězdnými společníky za různých podmínek a vzali jsme v potaz i interakci a prolínání obou hvězd během srážky. Tyto nově vzniklé hvězdy se jako modří veleobři projevují ve své druhé nejdelší životní etapě, kdy ve svém jádru spalují hélium,“ objasnila vedoucí studie Athira Menon.

Myšlenka vzniku těchto hvězd při srážkách dvojhvězd se tedy zdá správná. Důležité však bylo i ověřit, zdali tato hypotéza dokáže vysvětlit i pozorované vlastnosti modrých veleobrů. Ukázalo se, že velká část pozorovaných hvězd vzniklých tímto způsobem opravdu dosahuje takových povrchových podmínek, specificky zvýšeného obsahu dusíku a hélia ve svých atmosférických vrstvách, jako bylo u modrých veleobrů očekáváno. Ba co víc, dokonce se s nimi shoduje lépe, než hvězdy vzniklé tak, jak předpokládaly konvenční modely. Výzkum tedy vypadá velmi nadějně a ve své další fázi se zaměří naopak na zánik těchto hvězd a to, jak z nich mohou vznikat neutronové hvězdy a černé díry.

Zdroje a doporučené odkazy:
[1] phys.org
[2] wikipedia.org



O autorovi

Jan Herzig

Jan Herzig

Narodil se roku 2008 v Plzni, žije v Horšovském Týně. Studuje na Gymnáziu J. Š. Baara v Domažlicích. Vesmír ho uchvátil v 11 letech, nyní mu věnuje většinu svého času. Věnuje se teoretické i praktické astronomii. Na teoretické obdivuje možnost popsání vesmíru pomocí elegantních rovnic. V souvislosti s praktickou ho fascinuje pohled na vesmír vlastníma očima i svým dvaceticentimetrovým dalekohledem. Baví ho i popularizace astronomie a kosmonautiky, a to jak psaním článků, tak komentováním na youtube či v rádiu. V posledních třech letech se čtyřikrát umístil na vítězných pozicích ve finálových kolech Astronomické olympiády. Na XXVI. Mezinárodní astronomické olympiádě získal bronzovou medaili, na I. a II. Mezinárodní olympiádě v astronomii a astrofyzice pro juniory zlatou medaili, ve druhém případě k tomu dosáhl na 1. místo v Evropě. Správce Instagramu ČAS.

Štítky: Hvězdné kolize, Vznik hvězd, Modrý nadobr, Veleobr


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »