Úvodní strana  >  Články  >  Hvězdy  >  Potvrzeno: jádro bílého trpaslíka může zkrystalizovat

Potvrzeno: jádro bílého trpaslíka může zkrystalizovat

Nitro chladného bílého trpaslíka je v krystalickém stavu
Autor: Mark Garlick/University of Warwick

Astronomové využívající astrometrickou družici s názvem Gaia, kterou provozuje Evropská kosmická agentura ESA, objevili první přímé důkazy, že hvězdy typu bílého trpaslíka vytvářejí krystalické jádro z kovového kyslíku a uhlíku. Tento proces krystalizace byl předpovězen již před více než 50 lety, avšak až do uskutečněných pozorování pomocí observatoře Gaia vědci nebyli schopni provést dostatečná pozorování bílých trpaslíků s takovou přesností, aby objevili charakteristiky odhalující tento proces.

Bílí trpaslíci jsou pozůstatky hvězd střední velikosti podobných našemu Slunci. Jakmile tyto hvězdy spálí ve svém jádru veškeré nukleární palivo, odvrhnou své vnější vrstvy do okolí a odhalí tak horké jádro, které pomalu chladne. Tyto mimořádně husté pozůstatky stále vyzařují tepelnou energii, postupně chladnou a astronomové je pozorují jako docela slabé objekty.

Vědci odhadují, že více než 97 % hvězd v naší Galaxii se nakonec změní v bílé trpaslíky, zatímco hmotné hvězdy skončí v podobě neutronových hvězd nebo černých děr.

Chladnutí bílých trpaslíků probíhá miliardy roků. Jakmile dosáhnou určité teploty, původně žhavá látka v jádru hvězdy začíná krystalizovat a stává se pevnou hmotou. Proces se podobá ději, když se kapalná voda na Zemi mění v led při nízkých teplotách.

Tým vědců z University of Warwick, jehož vedoucím byl astronom Pier-Emmanuel Tremblay, vybral 15 000 kandidátů na bílé trpaslíky, kteří se nacházeli do vzdálenosti 300 světelných roků od Země. Na základě databáze družice Gaia analyzovali údaje o svítivosti a barvě hvězd. Identifikovali hvězdy se specifickými charakteristickými barvami a svítivostmi, které neodpovídají žádné jednotné hmotnosti či stáří.

Nalezli jsme spoustu bílých trpaslíků určitých barev a svítivostí, kteří nebyli nijak spojeni, pokud jde o jejich vývoj,“ vysvětluje Pier-Emmanuel Tremblay. „Uvědomili jsme si, že se nejednalo o odlišnou populaci bílých trpaslíků, ale o důsledek chladnutí a krystalizace předpovězené již před 50 roky.“

Umělecké ztvárnění možného vývoje různě hmotných hvězd Autor: ESA
Umělecké ztvárnění možného vývoje různě hmotných hvězd
Autor: ESA
Teplo uvolněné v průběhu procesu krystalizace, který trvá několik miliard roků, zdánlivě pozvolna zpomaluje vývoj bílých trpaslíků; hvězdy následkem toho přestanou slábnout a vypadají o dvě miliardy roků mladší, než ve skutečnosti jsou. To má pro změnu dopad na naše chápání stáří celého hvězdného uskupení, jehož součástí jsou tito bílí trpaslíci.

Bílí trpaslíci jsou tradičně používáni pro určování věku hvězdných populací jako jsou hvězdokupy, vnější disk a halo naší Galaxie,“ říká Pier-Emmanuel Tremblay. „Nyní budeme zdokonalovat modely krystalizace bílých trpaslíků, abychom získali mnohem přesnější odhady věku těchto soustav.“

Ne všichni bílí trpaslíci krystalizují stejnou rychlostí. Nejhmotnější z nich chladnou velmi rychle a dosáhnou teploty, při které nastane krystalizace, zhruba za miliardu roků. Bílí trpaslíci s malou hmotností – blízko očekávané hmotnosti Slunce na jeho konci života – chladnou mnohem pomaleji a potřebují až 6 miliard roků, než se jejich nitro změní v pevnou kouli.

Slunce má před sebou asi 5 miliard let života, než se stane bílým trpaslíkem a astronomové odhadují, že bude trvat ještě dalších 5 miliard roků, než nakonec vychladne a jeho jádro zkrystalizuje.

Všichni bílí trpaslíci krystalizují na stejné etapě svého vývoje, ačkoliv mnohem hmotnější bílí trpaslíci procházejí tímto procesem dříve,“ dodává Pier-Emmanuel Tremblay. „To znamená, že miliardy bílých trpaslíků v naší Galaxii již dokončily tento proces a v podstatě existují jako krystalické koule ve vesmíru.“

Slunce se stane krystalickým bílým trpaslíkem přibližně za 10 miliard roků.

Studie byla publikována ve vědeckém časopise Nature.

Zdroje a doporučené odkazy:
[1] sci-news.com
[2] esa.int
[3] scitechdaily.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Družice GAIA, Bílý trpaslík


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »