Předpověď osudu Slunce - interferometrická odhalování okolí hvězd typu Mira Ceti
Mezinárodní tým astronomů pod vedením Guy Perrina z Paris Observatory/LESIA v Meudonu a Stephena Ridgwaye z National Optical Astronomy Observatory v Tucsonu, Arizona, sledoval blízké okolí pěti Mirid pomocí interferometrických technik. Získané výsledky byly velkým překvapením. Zjistilo se totiž, že hvězdy jsou obklopeny slupkou z vodní páry a možná také kysličníku uhelnatého a dalších molekul. A je to právě tato slupka, která dává hvězdám klamnou zdánlivou velikost. Astronomům se podařilo proniknout skrz tuto vrstvu tak, že kombinovali světlo shromážděné různými teleskopy a při tom zjistili, že Miridy mají ve skutečnosti jen polovinu dříve uváděné velikosti.
Objev vyřešil nepříjemné nesrovnalosti mezi vizuálním pozorováním Mirid a modely, které popisovaly jejich složení a pulsaci, vysvětlil Ridgway. Revidovaný náhled na Miridy nyní říká, že se jedná o velmi zářivé, ale ještě relativně normální hvězdy z asymptotické větve obrů, jejichž velkou proměnlivost mají na svědomí rezonantní pulsace.
Ačkoli jsou tyto hvězdy průměrem opravdu velmi velké, až několik set poloměrů Slunce, jsou to při vizuálním pozorování vždy jen bodové zdroje světla. Dokonce i největší dalekohledy selžou při pokusu o rozlišení podrobností jejich povrchu. Takový nedostatek však může být překonán kombinováním obrazů z prostorově oddělených dalekohledů, tedy použitím techniky astronomického interferometru. Tato technika umožňuje studovat i velmi malé detaily v těsném okolí Mirid a z takovýchto pozorování pak může vzniknout obraz, který by nebylo možné získat jen jedním velkým dalekohledem.
Pro nás pozemšťany jsou nejzajímavější Miridy o velikosti Slunce. Ilustrují totiž jeho osud za pět miliard roků. Pokud by taková hvězda, i s okolní slupkou, byla umístěná do pozice Slunce v naší sluneční soustavě, její mlhavý obal by přesáhl oběžnou dráhu Marsu. Všechny "kamenné" planety naší soustavy by ale v takové chvíli už neexistovaly.
Jedno z možných vysvětlení pro velkou proměnnost Mirid je, že během každého cyklu je vyprodukováno velké množství materiálu, včetně prachu a nejrůznějších molekul. Nově vyvržený materiál pak nějakou dobu blokuje značnou část odcházejícího záření vlastní hvězdy, dokud není rozpínáním dostatečně zředěn, aby se stal více průhledným. Blízké okolí Mirid je při takovémto modelu velmi komplexní a charakteristické rysy centrálního objektu jsou jen obtížně sledovatelné.
IOTA je Michelsonův hvězdný interferometr, se dvěma rameny zalomenými do tvaru L. Pracuje tedy se třemi dalekohledy, které mohou být umístěny kdekoliv na zalomené základně. Při sledování Mirid bylo vykonáno mnoho pozorování na různých vlnových délkách a za použití různých rozestupů dalekohledů od 10 do 38 metrů.
U těchto pozorování byl tým schopen rozlišit detaily až do rozměru asi 1 setiny obloukové vteřiny. Jen pro srovnání, ve vzdálenosti Měsíce by takové rozlišení odpovídalo detailu okolo 20 metrů.
Pozorování byla vykonána v blízké infračervené oblasti, která je obzvláště vhodná pro studium vodní páry a kysličníku uhelnatého. Nové výsledky z interferometru IOTA zřetelně ukazují, že Miridy jsou obklopené vrstvou molekul vodní páry a přinejmenším v některých případech i molekulami kysličníku uhelnatého. Tato vrstva má teplotu okolo 2.000°K a zabírá asi 50% z pozorovaného průměru hvězdy.
Nově představená pozorování jsou interpretována v rámci modelu, který sjednocuje pozorování a teorii. V tomto modelu je prostor mezi vlastním hvězdným povrchem a vnější vrstvou molekul nejspíše vyplněn plyny a tvoří tedy jakousi atmosféru. Ta je při pozorování na infračervených vlnových délkách relativně průhledná. Naopak ve viditelném světle je molekulová vrstva dostatečně neprůhledná na to, aby vytvořila dojem, že se jedná o povrch hvězdy.
Takto postavený model je prvním, který vysvětluje strukturu Mirid v širokém rozsahu vlnových délek, od viditelného světla až po střední infračervené délky a zároveň se dobře shoduje s teoretickými vlastnostmi jejich pulsací. Nicméně, přítomnost vrstvy molekul vysoko nad povrchem hvězdy je ještě poněkud záhadná. Vrstva je příliš vysoko a je příliš hustá na to, aby byla držena pouze tlakem "atmosféry" pod ní. Pulsace hvězdy pravděpodobně hrají roli při vzniku této vrstvy, ale celému jejímu mechanismu jsme dosud neporozuměli.
Miridy reprezentují pozdní vývojový stupeň hvězd jako je Slunce. Nové objevy tedy jsou velmi zajímavé už jen pro možnost lépe popsat procesy, které se vyskytují okolo konce jejich života. Také Slunce ve vzdálené budoucnosti, stejně jako dnes Miridy, začne do okolního prostoru vyvrhovat velká množství plynu a prachu, typicky asi třetinu hmotnosti Země ročně. Do galaxie se tímto mechanizmem dostávají asi 3/4 všech molekul uhlíku, dusíku, kyslíku a dalších prvků, tedy i těch, ze kterých jsme stvořeni my. Většina z nich byla vyprodukována právě v nitru takových hvězd jako jsou Miridy. Naopak těžké prvky pocházejí ze supernov. Dospívající technika interferometrického sledování, která odhaluje detaily v atmosférách Mirid, tak přibližuje astronomy a astrofyziky k porozumění, jak ve vesmíru probíhá produkce, distribuce a recyklace chemických prvků.
Článek "Odhalené Mirydy mezi molekulami: Potvrzení modelu molekulové vrstvy pomocí úzkopásmové infračervené interferometrie", autor Perrin a kolektiv, se objeví v příštím vydání časopisu Astronomy & Astrophysics.
Zdroj: NOAO
Převzato: Hvězdárna Uherský Brod