Úvodní strana  >  Články  >  Kosmonautika  >  Curiosity 5. díl: CheMin

Curiosity 5. díl: CheMin

Umístění přístrojů na MSL, NASA, JPL
Umístění přístrojů na MSL, NASA, JPL
Dnes se podíváme na první přístroj, který má za úkol přímé zkoumání vzorků, tedy prachu a úlomků kamenů. Až doposud jsme se zaměřovali spíše na průzkum z větší či menší vzdálenosti. Teď nás čeká přístroj CheMin (Chemistry & Mineralogy), který se nachází na těle roveru a jeho úkolem není nic jiného, než provádět chemické rozbory odebraných vzorků. V nich bude pátrat především po prvcích, které jsou potřebné pro vznik života.

Vůbec poprvé na Rudé planetě se nasazení dočkává přístroj, který využívá průzkumu na základě rentgenového rozkladu. Tato metoda je mnohem přesnější, než postupy používané při dřívějších misích. Měření rentgenového záření umožňuje velmi přesně určit přítomnost a množství obsažených prvků. Princip je následující – svazek rentgenových paprsků se na vzorku rozptýlí. Jelikož jsou základem většiny horniny krystaly, dá se ze způsobu, jakým odráží paprsky vyčíst mnoho informací. jde především o úhly, pod jakými se paprsky odráží – ty nám napoví, o jakou krystalografickou soustavu se jedná. Skoro by se dalo říct, že každý minerál má jiné lomy a odrazy paprsků, které vytváří jeho unikátní „otisk prstu“.

Princip fungování přístroje CheMin, NASA/JPL
Princip fungování přístroje CheMin, NASA/JPL
Zkoumaný materiál se získá buď odbroušením kamenů, nebo prostým nabráním prachu, který pokrývá marsovský povrch. V obou případech se o transport materiálu k násypce postará robotická paže vozítka. Jak jsme si řekli už na začátku – CheMin bychom našli v těle roveru – přesněji v jeho přední části. Tam se nachází odnímatelná krytka sloužící k nasypání vzorku – materiál pak padá dovnitř a dopadne na vibrující síto. Přes něj projdou pouze částice menší než 0,15 milimetru. Pak už na něj čeká vědecký průzkum. Materiál dopadne do připravené kapsle o průměru knoflíku u košile a tloušťce kreditní karty. Stěny této kapsle jsou z průhledného materiálu. Celkem bychom v útrobách přístroje našli 32 těchto kapslí, které jsou umístěny na otočném kole. Jeho otočením je tak možné zahájit průzkum kteréhokoliv vzorku – stačí jen otočit kolem tak, aby požadovanou kapslí procházelo rentgenové záření. Pět kapslí je zaplněno už od začátku – byly naplněny ještě před startem známými látkami a na Marsu budou sloužit ke kalibraci přístroje. Zbývajících 27 kapslí je připraveno na vzorky z Marsu – každá kapsle je přitom vícenásobně použitelná. Kapsle jsou spojeny do dvojice a každá dvojice je připevněna k jedné ladičce. Ta je napojena na drobný piezoelektrický bzučák. Ten se aktivuje, pokud je „jeho“ kapsle zkoumaná a rozechvívá ladičku. Frekvence kmitů je asi 200 za sekundu (střední C na klavíru má 261 kmitů za sekundu). Není to samoúčelné hraní – tím, že se chvěje ladička tak se hýbe i kapsle se vzorkem. A tím pádem se pohybuje i prášek v kapsli – rentgenový paprsek tak postupně prozkoumá větší množství materiálu, než pokud by byl vzorek nehybný. Samotný přístroj váží asi 10 kilogramů a na první pohled připomíná krychli s hranou 25 centimetrů.

Rentgenové záření v přístroji CheMin je emitováno vysokoenergetickými elektrony, které bombardují kobaltový terč. Záření pak projde vzorkem a zamíří do detektoru, kde bychom našli přístroje citlivé na detekci rentgenových paprsků a několika kamer. Přístroje jsou hlazeny na -60°C. Přístroje se zaměřují nejen na zkoumání primárních paprsků, tedy těch, které byly vyslány výše popsaným způsobem prošly vzorkem a dopadly na detektor. Pozornost se věnuje i sekundárním paprskům, které vznikají až ve vzorku po ozáření primárním zdrojem. Je to taková rentgenová fluorescence. Tímto způsobem se daří objevit prvky těžší než sodík. Přístroje, které se doposud vydaly na Mars nebyly schopné odhalit všechny minerály. CheMin odhalí i sloučeniny, kterých je ve vzorku 3%. Přístroj se dá použít i pro nekrystalické vzorky – například pro vulkanické sklo. Jelikož každý materiál potřebuje ke svému zformování určité podmínky (přítomnost vody, teplota, tlak), tak díky zjištění složení hornin můžeme poznat, jak to na Marsu vypadalo v době, kdy tento materiál vznikal. Navíc pokud průzkum odhalí fosfáty, uhličitany, sulfáty, nebo křemičitany, může to být vodítko pro hledání dřívější existence života.

Tolik tedy přístroj CheMin. A už teď se těšte na zítřek – čeká nás největší vědecký přístroj roveru Curiosity – v podstatě samostatná vědecká laboratoř s názvem SAM.

Přeložil Dušan Majer, doplnil Martin Gembec

Převzato z facebookové stránky Diskuzního fóra o kosmonautice vesmir.thos.cz

Všechny části:
1. díl: MastCam
2. díl: ChemCam
3. díl: APXS
4. díl: MAHLI
5. díl: CheMin
6. díl: SAM
7. díl: REMS
8. díl: RAD
9. díl: DAN
10. díl: MARDI




O autorovi

Dušan Majer

Dušan Majer

Narodil se roku 1987 v Jihlavě, kde bydlí po celý život. Po maturitě na všeobecném soukromém gymnáziu AD FONTES vstoupil do regionální televize, kde několik let pracoval jako redaktor. Ve volném čase se věnoval kosmonautice. Postupně zjistil, že jej baví o tomto tématu nejen číst, ale že mnohem zajímavější je předávat tyto informace dál. Na podzim roku 2009 udělal dva velké kroky – jednak na internetu zveřejnil své první video o kosmonautice a navíc založil diskusní fórum o tomto oboru. Postupem času fórum rozrostlo o další služby a vznikl specializovaný zpravodajský portál kosmonautix.cz, který informuje o dění v kosmonautice. Rozběhla se i jeho tvorba videí na portálu Stream.cz. Pořad Dobývání vesmíru má sledovanost v desítkách tisíc a nasbíral již několik cen od Akademie věd za popularizaci vědy.

Štítky: Curiosity, Mars


19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »