Úvodní strana  >  Články  >  Ostatní  >  Dva prstence kolem černých děr? Mohla by za ně skrytá hmota!

Dva prstence kolem černých děr? Mohla by za ně skrytá hmota!

Umělecká představa superhmotné černé díry v centru galaxie NGC 3783. Vnitřní akreční disk obklopuje vnější slabší prstenec hmoty.
Autor: Zdroj: ESO/M. Kornmesser

Astrofyzikální proGResy z Opavy: Opavští fyzikové ve spolupráci se zahraničními vědci studují doposud nevysvětlené vlastnosti proměnného rentgenového záření pocházejícího z blízkosti superhmotných černých děr. Závěry nového výzkumu vědce vedou mimo jiné také k zajímavým informacím o rozložení a interakci doposud málo probádané skryté hmoty ve vesmíru. Jedním z důsledků výzkumu je možná existence dvou oddělných disků kolem superhmotných černých děr, což by obrazně mohlo připomínat rozložení prstenců u velkých planet Sluneční soustavy.

Doposud nevysvětlené záření

Vědci z Fyzikálního ústavu v Opavě v průběhu posledních let vyhodnocují oscilace rentgenového záření v okolí černých děr, které mj. pomohlo k určení hmotnosti jedné ze superhmotných děr nacházejících se v centrech galaxií. Podrobná analýza tohoto záření poukazuje na skutečnost, že u nejhmotnějších sledovaných objektů se pozorované frekvence oscilací tohoto záření významně liší od toho, co vědci předpokládají na základě modelů, jež velmi dobře korespondují se stejným typem oscilací záření u pozorovaných „malých“ černých děr vzniklých kolapsem hmotných hvězd.

Vědecká skupina profesora Stuchlíka se v poslední době intenzivně zabývá vlivem skryté hmoty v okolí supermasivních černých děr na tzv. oscilace akrečních struktur v jejich okolí, jež se podepisují na charakteru rentgenového záření přicházejícího z těchto struktur. „Při pozorovaní záření z horké hmoty tzv. akrečních disků obíhajících černé díry sledujeme dvě zesílené frekvence záření. To je emitováno z blízkého okolí tzv. horizontu událostí. Zajímavé je, že obě frekvence mají celočíselný poměr, nejčastěji 3:2,“ popisuje velice zajímavé vlastnosti tohoto záření doktor Vrba z Fyzikálního ústavu v Opavě, spoluautor jedné z vědeckých prací. Jedním z důsledků tohoto výzkumu byly rovněž úvahy o existenci červích děr a paralelních vesmírech. Tato nová vědecká cesta otevírá dveře k lepšímu mapování rozložení záhadné skryté hmoty (nebo také „temné hmoty“).

Neznámá skrytá hmota

Ačkoliv se astronomové věnují výzkumu vesmíru už celá staletí, více než 95 % složení vesmíru je nám dosud neznámé. Předpokládá se, že 68 % tvoří skrytá energie a zbývajících 27 % neznámého složení představuje skrytá hmota (někdy označovaná také jako „temná hmota“ z angl. „dark matter“). Je známo, že tato komponenta ve vesmíru opravdu existuje, a to kvůli řadě jinak nevysvětlitelných jevů, například z rozporuplného pozorování rychlostí rotace galaxií. Na to upozorňovali už v roce 1932 nizozemský astronom Jan Oort (1900–1992) a v roce 1933 švýcarsko-americký astronom s českými kořeny Fritz Zwicky (1898–1974). Na rozdíl od skryté energie není skrytá hmota rozložena v prostoru rovnoměrně.

Díky své gravitaci tvoří skrytá hmota shluky podobně jako ta viditelná, která je k těmto strukturám také přitahována. Některé novější výzkumy ukazují, že by přítomnost skryté hmoty mohla mít vliv na tzv. polarizaci mikrovlnného záření přítomného ve vesmíru. Předpokládá se, že tento jev způsobují hypotetické částice zvané axiony. Ale jinak nikdo nemá tušení, jakou mají tyto částice povahu či podobu. Existují pouze domněnky, které se bez lepší pozorovací technologie mohou jen těžko potvrdit či vyvrátit. Zatímco odpovědi o složení skryté hmoty se snaží rozluštit projekt CREDO (do něhož se může zapojit každý s chytrým telefonem), informace o detailnějším rozložení této hmoty přináší nový výzkum opavských fyziků.

Simulace galaktických nadkup, jejichž struktury ovlivňuje skrytá hmota ve vesmíru. Umělecká představa Autor: Springel et al. (Virgo Consortium)
Simulace galaktických nadkup, jejichž struktury ovlivňuje skrytá hmota ve vesmíru. Umělecká představa
Autor: Springel et al. (Virgo Consortium)

Velké množství skryté hmoty

„Zaměřili jsme se na superhmotné černé díry. Právě nesoulad astronomických pozorování s teoretickými hodnotami očekávanými v okolí těchto černých děr nás dovedl k myšlence, že zde může hrát velkou roli právě skrytá hmota. Je to celkem logické, neboť skrytou hmotu pozorujeme pouze díky jejím gravitačním účinkům a podle pozorování se nachází ve velkém množství ve většině galaxií ve vesmíru. Kde jinde bychom ji tedy měli očekávat více než právě v okolí superhmotných černých děr uprostřed galaxií, kde je soustředěná největší hmotnost,“ popisuje Vrba.

Jak se ukazuje, skrytá hmota je okolo černých děr rozložena v nemalém množství. „Pokud bychom uvažovali rozložení hmoty do vzdáleností nějakých 50 poloměrů dané černé díry, přičemž za okraj černé díry se považuje její horizont událostí, naše výpočty ukazují, že v takovém okolí je rozložena skrytá hmota o hmotnosti 20–200 procent dané černé díry! Jen pro příklad – kdyby uprostřed Sluneční soustavy byla černá díra, která se nachází v centru naší Galaxie, svým průměrem by zasahovala do čtvrtiny vzdálenosti k Merkuru a skrytá hmota rozložená v zóně až po dráhu Jupiteru by měla hmotnost až 8 milionů Sluncí!“ upřesňuje Vrba.

Černé díry s prstenci

Důsledkem této práce je také předpověď, že superhmotné černé díry mohou mít prstence podobně jako velké planety. „Právě díky skryté hmotě vyvolávající gravitační poruchy běžného prostoročasu černé díry může za určitých okolností dojít ke vzniku dvou oddělených akrečních disků, přičemž z vnějšího disku může padat hmota na vnitřní, ale z vnitřního disku na černou díru už nikoliv. Samozřejmě tato stabilita je jen dočasná, dokud množství nakumulované hmoty neporuší podmínky stability systému. Dalo by se to přirovnat k mezerám v prstencích v okolí velkých planet způsobených gravitačními účinky měsíců v okolí,“ dodává Vrba s tím, že to výrazně mění pohled na černé díry tak, jak je doposud prezentujeme v nejrůznějších videích i obrázcích. Právě vlastnosti těchto prstenců by pak měly být dalším vodítkem ke zpřesnění rozložení skryté hmoty nejen kolem černých děr samotných, ale i ve větších škálách v centrech galaxií. Jedním dechem však dodává, že takové „prstence“ zatím nejsme schopni se současnou technologií pozorovat.

Kontakty a další informace:

RNDr. Jaroslav Vrba, Ph.D.
Vědecký pracovník Fyzikálního ústavu SU v Opavě
Email: jaroslav.vrba@physics.slu.cz
Telefon: +420 605 484 525

prof. RNDr. Zdeněk Stuchlík, CSc.
Ředitel Fyzikálního ústavu SU v Opavě
Email: zdenek.stuchlik@physics.slu.cz

Bc. Lucie Dospivová
Sekretariát ředitele Fyzikálního ústavu v Opavě
Email: lucie.dospivova@physics.slu.cz
Telefon: +420 553 684 267

Mgr. Petr Horálek
PR výstupů evropských projektů FÚ SU v Opavě
Email: petr.horalek@slu.cz
Telefon: +420 732 826 853

doc. RNDr. Gabriel Török, Ph.D.
Garant evropského projektu HR Award
Email: gabriel.torok@physics.cz
Telefon: +420 737 928 755

Původní vědecká práce: https://arxiv.org/pdf/2208.02612.pdf

Související tiskové zprávy:

[1] Zapojte se s opavskými fyziky do hledání tajemné látky ve vesmíru
[2] Záhadné záření přivádí opavské fyziky k úvahám o paralelních vesmírech
[3] Opavští fyzikové objevili superhmotnou černou díru




O autorovi

Štítky: Astrofyzikální proGResy z Opavy, Skrytá hmota, Temná hmota, Skrytá látka, Černá díra


19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »