EWASS 2017 aneb Pražské astronomické hody (3)
Třetí pokračování žně novinek z mezinárodní konference EWASS nás zavede za zajímavými technickými divy. Jedním z nich je fakt, že dnes dokáže spolupracovat mnoho různých aparatur a pozorovat třeba jediný cíl. Kromě soustavy radioteleskopů ALMA se dozvíme něco o observatoři Square Kilometre Array, která se připravuje v Africe a Austrálii, a o jejich spolupráci s vesmírnými observatořemi a s LIGO. Dalším technickým unikátem je bezesporu chystaný infračervený vesmírný dalekohled Jamese Webba. I o něm si řekneme mnoho zajímavého. A na závěr této části si přiblížíme ještě jeden chystaný pozemský teleskop, který bude skutečně revolučním způsobem skenovat celou dostupnou část oblohy.
Synergie aparatur VLA - VLBI - LOFAR - ALMA - SKA - ATHENA - IceCube a LIGO
Díky úžasnému pokroku v sledování astronomických objektů simultánně v nejrůznějších oborech elektromagnetického spektra sílí snahy o hlubší využití synergie mezi obřími přehlídkovými programy. Mikrovlnná aparatura ALMA umožňuje již nyní studovat dosud opomíjené pásmo mikrovlnných délek 0.3 ÷10 mm (frekvence 35 ÷ 900 GHz) na interferometrických základnách antén od 15 m do 16 km. Od r. 2011 do loňska tak vzniklo již 690 prací, které se týkají cirkumstelárních a cirkumplanetárních disků kolem různých typů hvězd zobrazených s nevídaným úhlovým rozlišením až 20 úhlových mikrovteřin! Aparatura však dokáže zobrazit sluneční skvrny v milimetrovém pásmu, ale též kolimované relativistické výtrysky z černých děr, pulsarů a magnetarů. Pomocí Faradayovy rotace se dají studovat magnetická pole kolem jednotlivých objektů. ALMA je také velmi výkonná v odhalování objektů v hlubinách vesmíru díky červenému kosmologickému posuvu, takže umožňuje zkoumat dynamiku galaxií od doby 800 mil. let po Velkém třesku do současnosti. Vidíme tak objekty vzdálené od nás až 13 mld. sv. let.
Klíčové objevy se pak dají očekávat po vybudování aparatur SKA (Square Kilometre Array) o sběrné ploše přes 1 km2 v Austrálii a Jižní Africe. Na projektu se podílí na 20 států z celého světa a celkem stovka vědeckých ústavů a institucí. První pozorování s neúplnou aparaturou lze očekávat už v r. 2020, ale první fáze s cenovou visačkou 650 mil. € by měla spustit vědecká pozorování v r. 2023. Celá observatoř SKA by měla fungovat koncem příští dekády 21. století. Mezi její hlavní úkoly bude patřit extrémně přesné testování předpovědí obecné teorie relativity a zejména studie 1 miliardy galaxií v hlubinách vesmíru v čáře interstelárního neutrálního vodíku na vlnové délce 211 mm (1,4 GHz) s cílem určit jeho rozložení v trojrozměrném prostoru vesmíru. Cílem studie je objasnit, jak galaxie vznikaly, resp. jaký podíl na jejich vzniku měla skrytá látka (dark matter) a skrytá energie (dark energy). K dalším zásadním úkolům patří studium průběhu reionizace vesmíru v první miliardě let po Velkém třesku po skončení kosmického šerověku. V rádiovém oboru lze také sledovat gravitační čočky a zesílené vícenásobné obrazy vzdálených supernov a kvasarů.
Postupným propojením všech velkých pozemních rádiových přehlídek se téměř jistě podaří objasnit povahu záhadných kratičkých rádiových záblesků FRB (Fast Radio Bursts), které zcela náhodně přicházejí z tak vzdálených objektů vesmíru, že o nich zatím nevíme téměř nic. Souběžně lze očekávat i objasnění zdrojů kosmického magnetismu a případně i známek života mimo naší Sluneční soustavu. Další posilou synergie měření by pak měla být rentgenová družice ATHENA (Advanced Telescope for High Energy Astrophysics), jež by měla odstartovat na dráhu v r. 2028. Uvažuje se také o propojení těchto aparatur s detektory gravitačních vln LIGO a VIRGO, jakož i s antarktickým neutrinovým teleskopem IceCube.
Optický a infračervený teleskop Jamese Weba
V říjnu 2018 by měl odstartovat pomocí rakety Ariane 5 teleskop JWST (NASA, ESA, CSA) o průměru segmentového zrcadla 6,5 m na čím dál tím populárnější dráhy v okolí Lagrangeova bodu L2. Bude vybaven čtyřmi přístroji pro spektrální pásmo 0,6 až 28 mikrometrů. Kameru pro blízkou infračervenou oblast zhotovili pracovníci Univerzity v Arizoně, kdežto spektrograf pro tutéž oblast dodala ESA ve spolupráci s Goddardovým centrem NASA. Jde o první spektrograf v kosmu, jenž bude schopen pořizovat naráz spektra až 100 objektů. ESA ve spolupráci s JPL vyvinula aparaturu MIRI pro střední infračervenou oblast. Čidla pro jemnou pointaci a bezštěrbinový spektrograf dodala Kanadská kosmická agentura (CSA). Životnost JWST se odhaduje na 5 až 10 let.
Nejdůležitějším úkolem JWST bude zkoumat vlastnosti vesmíru na rozhraní šerověku a epochy reionizace vesmíru, tj. v čase 0,2 až 1,0 mld. let po Velkém třesku. Vinou kosmologického červeného posuvu se maximum zářivého výkonu zdroj přesouvá z ultrafialové oblasti spektra až do středního infračerveného pásma, a to je hlavní důvod, proč právě toto pásmo je pro činnost JWST klíčové. Dalším úkolem teleskopu bude sledovat vývoj galaxií v první polovině dnešního věku vesmíru, zejména jak se rozrůznila jejich morfologie na spirální, eliptické a nepravidelné galaxie. Třetím klíčovým úkolem bude studovat obří molekulová mračna, hvězdné kolébky, a vznik vícenásobných hvězdných soustav i cizích planetárních soustav. Poslední hlavní úkol se týká podrobného studia exoplanet, jejich atmosfér a případně i vytipování exoplanet vhodných pro rozvoj života. K tomu se samozřejmě přidává ještě pátý úkol: objevit něco, co nikdo nepředpokládá.
Mezní hvězdná velikost JWST dosáhne v infračerveném oboru asi 30 mag. Plánování pozorovacího programu komplikuje skutečnost, že dalekohled je poněkud těžkopádný, když má následně pozorovat objekty vzdálené od polohy aktuální expozice více úhlových stupňů. Zorná pole jednotlivých kamer a spektrografů jsou docela malá: nejvíce 3,4'×3,4' a nejméně 3"×3".
Obří synoptický teleskop LSST
Projekt obřího synoptického dalekohledu získal prioritu dekadického programu technického rozvoje americké astronomie zveřejněného v r. 2010. Práce na něm započaly v srpnu 2014 za účasti nejenom amerických astronomů. Podílejí se na něm také astronomové a technici a informatici z Francie, Česka, Srbska a Velké Británie. Celkem je do projektu zapojeno celkem 64 většinou amerických vědeckých institucí, s významným podílem 14 francouzských pracovišť. Česko je zastoupeno pracovníky Fyzikálního ústavu AV ČR a Univerzity Karlovy.
Hlavním úkolem teleskopu o průměru primárního zrcadla 8,4 metru a unikátním optickým systémem se zorným polem o průměru 3,5° (plocha 9,6 čtverečních stupňů) bude opakovaně snímkovat oblohu viditelnou z observatoře Cerro Pachón (30 tis. čtverečních stupňů na jih od +34,5°; zeměpisná šířka –30°; 2,7 km n. m.) v Chile. Podle plánu by měla observatoř začít rutinní práci počátkem r. 2022. Teleskop bude vybaven obří mozaikovou kamerou CCD s kapacitou 3,2 Gpixelů (189 čipů s kapacitou 16 Mpix chlazených na –100 °C). Jde o vůbec největší digitální kameru na světě. Má rozměry 1,65 m × 3,0 m a hmotnost 2,8 t! Ohnisková rovina má průměr 640 mm.
Očekává se, že LSST pořídí během roku asi 200 tis. snímků v pěti až šesti spektrálních filtrech v rozsahu vlnových délek 400 až 1 060 nm, tj. asi 1,3 PB dat (petabajt je přibližně milion gigabajtů). Centrální počítač musí proto mít operační rychlost minimálně 100 teraflops a schopnost uložit alespoň 15 PB dat. Záplava údajů během 10 let provozu se odhaduje na 6 milionů pozorování těles Sluneční soustavy (převážně planetek), 17 miliard pozorování hvězd, 20 mld. pozorování galaxií a 37 bilionů měření. Autoři projektu odhadují, že každou noc zaznamená LSST na 10 milionů (!) přechodných jevů a vydá o tom po internetu upozornění pro další sledování těchto úkazů jinými přístroji na zemi i v kosmu. Je zcela zřejmé, že k využití tohoto bohatství údajů bude zapotřebí napnout síly celé světové astronomické obce a zejména informatiků. Není divu, že jednou z amerických institucí zapojených aktivně do projektu je i společnost Google.
LSST bude mít jako hlavní úkoly studovat vlastnosti skryté látky a skryté energie, dále výrazně zlepšit znalosti o drobných tělesech Sluneční soustavy (planetky, komety), objevovat krátkodobé přechodné jevy ve vesmíru a zmapovat podrobně strukturu naší Galaxie. Program se pochopitelně bude vyvíjet, jakmile začnou přicházet zmíněné záplavy dat.
(článek na pokračování)
1. díl: Exoplanety, SGR A*, simultánní spektroskopie
2. díl: Observatoř Pierra Augera, zábleskové zdroje gama, družice Gaia
3. díl: Synergie aparatur, JWST, LSST
4. díl: Čerenkovova soustava teleskopů, gravitační vlny
5. díl: ESA, ESO, astronomická kybernetika
Seriál
- EWASS 2017 aneb Pražské astronomické hody (1)
- EWASS 2017 aneb Pražské astronomické hody (2)
- EWASS 2017 aneb Pražské astronomické hody (3)
- EWASS 2017 aneb Pražské astronomické hody (4)
- EWASS 2017 aneb Pražské astronomické hody (5)