Úvodní strana  >  Články  >  Sluneční soustava  >  Astronomové zpřesnili délku dne na planetě Saturn

Astronomové zpřesnili délku dne na planetě Saturn

Publikovaný snímek Saturnu pořídila sonda Cassini v roce 2016
Autor: NASA/JPL-Caltech/Space Science Institute

Astronomové se domnívají, že na základě nového zpracování údajů z kosmické sondy NASA s názvem Cassini vyřešili dlouholetou vědeckou záhadu ve Sluneční soustavě: Jaká je délka dne (tj. délka jedné otočky) na planetě Saturn. Dospěli k hodnotě 10 hodin 33 minuty 38 sekund. Záhada unikala planetologům po desetiletí, protože obří plynná planeta nemá pevný povrch s výraznými útvary ke změření její rotace. A také má neobyčejné magnetické pole, které zamlžuje periodu rotace planety. Odpověď na otázku se ukrývala v prstencích Saturnu.

Během doby, kdy sonda Cassini obíhala kolem Saturnu, přístroje na její palubě studovaly s mimořádným rozlišením prstence tvořené nepatrnými úlomky ledu a horniny. Christopher Mankovich, postgraduální student astronomie a astrofyziky na UC Santa Cruz, použil tato data ke studiu zákonitostí vlnění uvnitř prstenců.

Z jeho práce vyplynulo, že prstence reagují na vibrace uvnitř samotné planety; působí podobně jako seismometr použitý při měření posuvu hmoty způsobeného zemětřesením. Nitro Saturnu vibruje na frekvencích, které následně způsobují variace v gravitačním poli planety. Prstence pro změnu reagují na tyto pohyby gravitačního pole.

Částice vytvářející prstence vycítí tyto oscilace gravitačního pole,“ říká Christopher Mankovich. „Na určitých místech prstenců tyto oscilace ovlivní přítomné částice ve správném okamžiku jejich drah a postupně tak zvyšují jejich energii. Tato doplňující energie je posune stranou, což pozorujeme jako vlnu.“

V článku, který byl publikován 17. 1. 2019 v časopise Astrophysical Journal, popisuje Christopher Mankovich, jak vyvíjel modely vnitřní struktury planety Saturn, které by odpovídaly pozorovaným vlnám v prstenci. To mu umožnilo vystopovat pohyb nitra planety – a tudíž i jeho rotaci.

Rotace rychlostí jedné otočky za 10:33:38, která byla odvozena na základě analýzy, je o několik minut kratší, než byl dřívější odhad z roku 1981, který byl učiněn na základě rádiového signálu ze sondy Voyager. Analýzy dat tehdy vedly k určení délky dne 10:39:23 a byly uskutečněny na základě informací o změnách magnetického pole planety. Rovněž sonda Cassini využila magnetické pole Saturnu k určení periody rotace, odhadly vedly k hodnotám mezi 10:36 a 10:48.

Vědci často spoléhají na studium magnetického pole k určení periody rotace planet. Rotační osa magnetického pole planety Jupiter, podobně jako u Země, není souběžná s jejich rotační osou. Tudíž se pohupuje v souladu s rotací planety, což vědcům umožňuje změřit periodicitu signálu na rádiových vlnách a určit rotační periodu tělesa. Avšak Saturn je odlišný. Jeho unikátní magnetické pole má osu téměř dokonale shodnou s rotační osou tělesa.

Hustotní vlny v prstenci B na snímku s bezprecedentním rozlišením pořízeném sondou Cassini Autor: NASA/JPL-Caltech/SSI/Emily Lakdawalla
Hustotní vlny v prstenci B na snímku s bezprecedentním rozlišením pořízeném sondou Cassini
Autor: NASA/JPL-Caltech/SSI/Emily Lakdawalla
To je důvod, proč byly prstence klíčem k určení délky dne na Saturnu. Astronomové zkoumající planetu jsou v dobré náladě, protože mají dosud nejlepší odpověď na tuto základní otázku týkající se Saturnu.

Astronomové využili vlny v prstencích k nahlédnutí do nitra planety Saturn a nalezli tento dlouho hledaný charakteristický údaj o planetě. A je to vskutku solidní závěr,“ říká Linda Spilker, vědecká pracovnice projektu Cassini. „Odpověď se zkrátka ukrývala v prstencích.“

Představa, že Saturnovy prstence mohou být využity ke studiu seismologie planet, byla poprvé vyslovena v roce 1982, dlouho před tím, než bylo možné potřebná pozorování uskutečnit.

Spoluautor článku Mark Marley, který je v současnosti pracovníkem NASA’s Ames Research Center in California’s Silicon Valley, získal později za vypracování diplomové práce v roce 1990 titul Ph.D. Provedl potřebné výpočty a předpověděl, kde by se v Saturnových prstencích mohly nacházet charakteristické znaky. Rovněž poznamenal, že sonda Cassini, která se tehdy nacházela ve stadiu plánování, bude schopná uskutečnit pozorování nutná k prověření této představy.

O dvě desetiletí později, v posledních letech existence sondy Cassini, astronomové analyzovali její data a objevili v prstencích charakteristické útvary v poloze, kterou předpověděl Mark Marley,“ říká spoluautor článku Jonathan Fortney, profesor astronomie a astrofyziky na UC Santa Cruz a člen týmu sondy Cassini.

Mise sondy Cassini byla ukončena v září 2017, když spotřebovala veškeré zásoby pohonných látek a byla záměrně navedena do hustých vrstev atmosféry Saturnu, kde shořela. Bylo tak zabráněno případné kontaminaci některého z měsíců planety pozemskými mikroorganismy.

Zdroje a doporučené odkazy:
[1] solarsystem.nasa.gov
[2] phys.org

Převzato: Hvězdárna Valašské Meziříčí



Štítky: Rotace planety, Prstence Saturnu, Sonda Cassini, Planeta Saturn


50. vesmírný týden 2024

50. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 9. 12. do 15. 12. 2024. Měsíc je nyní na večerní obloze ve fázi kolem první čtvrti a dorůstá k úplňku. Nejvýraznější planetou je na večerní obloze Venuše a během noci Jupiter. Ideální viditelnost má večer Saturn a ráno Mars. Aktivita Slunce je nízká. Nastává maximum meteorického roje Geminid. Uplynulý týden byl mimořádně úspěšný z pohledu evropské kosmonautiky, ať už vypuštěním mise Proba-3 nebo úspěšného startu rakety Vega-C s družicí Sentinel-1C. A před čtvrtstoletím byl vypuštěn úspěšný rentgenový teleskop ESA XMM-Newton.

Další informace »

Česká astrofotografie měsíce

Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách

Titul Česká astrofotografie měsíce za říjen 2024 obdržel snímek „Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách“, jehož autorem je Daniel Kurtin.     Komety jsou fascinující objekty, které obíhají kolem Slunce a přinášejí s sebou kosmické stopy ze vzdálených

Další informace »

Poslední čtenářská fotografie

NGC1909 Hlava čarodejnice

Veríte v čarodejnice? Lebo ja som Vám hlavu jednej takej vesmírnej čarodejnice aj vyfotil. NGC 1909, alebo aj inak označená IC 2118 (vďaka svojmu tvaru známa aj ako hmlovina Hlava čarodejnice) je mimoriadne slabá reflexná hmlovina, o ktorej sa predpokladá, že je to starobylý pozostatok supernovy alebo plynný oblak osvetľovaný neďalekým superobrom Rigel v Orióne. Nachádza sa v súhvezdí Eridanus, približne 900 svetelných rokov od Zeme. Na modrej farbe Hlavy čarodejnice sa podieľa povaha prachových častíc, ktoré odrážajú modré svetlo lepšie ako červené. Rádiové pozorovania ukazujú značnú emisiu oxidu uhoľnatého v celej časti IC 2118, čo je indikátorom prítomnosti molekulárnych mrakov a tvorby hviezd v hmlovine. V skutočnosti sa hlboko v hmlovine našli kandidáti na hviezdy predhlavnej postupnosti a niektoré klasické hviezdy T-Tauri. Molekulárne oblaky v IC 2118 pravdepodobne ležia vedľa vonkajších hraníc obrovskej bubliny Orion-Eridanus, obrovského superobalu molekulárneho vodíka, ktorý vyfukovali vysokohmotné hviezdy asociácie Orion OB1. Keď sa superobal rozširuje do medzihviezdneho prostredia, vznikajú priaznivé podmienky pre vznik hviezd. IC 2118 sa nachádza v jednej z takýchto oblastí. Vetrom unášaný vzhľad a kometárny tvar jasnej reflexnej hmloviny silne naznačujú silnú asociáciu s vysokohmotnými žiariacimi hviezdami Orion OB1. Prepracovaná verzia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 150/600 (150/450 F3), Starizona Nexus 0.75x komakorektor, QHY 8L-C, SVbony UV/IR cut, Gemini EAF focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 209x240 sec. Lights gain15, offset113 pri -10°C, master bias, 90 flats, master darks, master darkflats 4.11. až 7.11.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »