Úvodní strana  >  Články  >  Sluneční soustava  >  Jak se měří vzdálenosti ve Sluneční soustavě?

Jak se měří vzdálenosti ve Sluneční soustavě?

Přechod Venuše 2012 přes vycházející Slunce
Autor: Martin Gembec

Naši předci se postupně prokousávali poznatky, že naše Země je kulatá, jaký má průměr či jak velký a vzdálený je Měsíc. Zákonitě se tedy dostali i k otázce, jaké jsou vzdálenosti mezi jednotlivými planetami. A my se dnes můžeme ptát, kde se vzala ta čísla v učebnicích, která bereme jako samozřejmost.

Zásadním krokem, který nám dal představu o vzdálenostech objektů ve Sluneční soustavě, byla formulace třetího Keplerova zákona. Ten udává vztah mezi oběžnými dobami vybraných dvou planeta hlavními poloosami jejich eliptických oběžných drah. Pokud známe oběžné doby jakýchkoli dvou planet, ihned známe i poměr hlavních poloos jejich orbit. Potíž je v tom, že známe skutečně jen poměr, nikoliv absolutní vzdálenosti v kilometrech. Výhodou znalosti 3. Keplerova zákona je však to, že nám stačí znát vzdálenost jedné jediné planety od Slunce absolutně a okamžitě můžeme dopočítat vzdálenosti všech ostatních planet, aniž bychom jejich vzdálenosti přímo měřili. Je pochopitelné, že planetou, jejíž absolutní vzdálenost od Slunce byla snaha změřit, byla Země.

Existuje řada metod, jak zjistit vzdálenost Země od Slunce a lidé se o to pokoušeli již dávno před tím, než vůbec byly známy Keplerovy zákony. Nicméně řada z nich ztroskotala na tom, že vyžadovaly extrémní přesnost měření velmi malých úhlů, jiné byly úspěšnější. Uvedeme si však pouze známý historický příběh jedné metody, kterou byla změřena vzdálenost Země-Slunce s velmi přesným výsledkem, jenž již téměř odpovídal dnes udávané hodnotě.

Událostí, které mělo být k tomu měření využito, byl přechod Venuše přes sluneční kotouč. To je jev, kdy se Venuše dostane přesně mezi Slunce a Zemi, a na Slunci tak po dobu několika hodin vidíme pohybující se černý kotouček. Ze stejných důvodů jako u zatmění Slunce, což není nic jiného než přechod Měsíce přes sluneční disk, k tomuto jevu nedochází při každém oběhu. Rovina oběhu Venuše je totiž o několik stupňů skloněna vůči rovině oběhu Země, takže i když se Venuše nachází v dolní konjunkci, na obloze se většinou promítá mimo sluneční kotouč. Každých 243 let lze však pozorovat dvě dvojice přechodů, kdy přechody v jedné dvojici dělí jen 8 let. Pak ale následují různě dlouhé mezery, vždy však delší než 100 let. Naposledy jsme mohli dvojici přechodů pozorovat v letech 2004 a 2012, na příští dvojici si musíme počkat až do let 2117 a 2125. Pokud jste to tedy nestihli teď, tak tento jev už pravděpodobně nespatříte.

Přechod Venuše přes Slunce Autor: Hvězdárna Plzeň
Přechod Venuše přes Slunce
Autor: Hvězdárna Plzeň

První přechod Venuše byl předpovězen přímo Keplerem na rok 1631, ale bohužel nebyl z Evropy viditelný, čili jej nikdo nezpozoroval. Druhý pokus byl učiněn, jak jste již asi odhadli, o 8 let později v Anglii, nicméně tento lidmi vůbec první spatřený přechod Venuše viděli jen dva astronomové a navíc pozorování velmi zkomplikovala oblačnost. Přesto se podařilo odhadnout vzdálenost na 96 milionů kilometrů, což i přes velkou nepřesnost stále byla hodnota již srovnatelná se skutečnou vzdáleností přibližně 150 milionů kilometrů.

Přelomové však byly další přechody v letech 1761 a 1769. Ty už astronomové nedočkavě vyhlíželi s odhodláním, že již konečně s velkou přesností určí absolutní vzdálenost Země od Slunce. Byla vypravena spousta expedic, kterými byl přechod pozorován z různých míst naší planety. A jak vlastně chtěli z přechodu Venuše tuto vzdálenost určit?

Klíčem byla, jak to u mnohých jiných astronomických měření vzdálenosti bývá, paralaxa. Paralaxa vyjadřuje rozdíl mezi zdánlivou polohou objektu vůči pozadí při pozorování z různých míst. Tohoto principu k určování vzdálenost využívají i naše dvě oči, z nichž každé se dívá na pozorovaný objekt z trochu jiného úhlu. Pokud se například na zdvižený prst své natažené ruky budete střídavě dívat jedním a druhým okem, snadno zpozorujete, že prst se v obou případech promítá na jiné místo proti předmětům v pozadí. To samé lze udělat, když budeme pozorovat přechod Venuše z různých míst na Zemi. Venuše při pohledu z různých míst přejde přes trochu jinou část slunečního disku. A pokud známe vzájemnou polohu pozorovacích stanovišť a z 3. Keplerova zákona skutečnost, že poloměr oběžné dráhy Venuše představuje asi 72 % poloměru oběžné dráhy Země, můžeme z tohoto rozdílu spočítat vzdálenost Země-Slunce.

Měření paralaxy při přechodu Venuše přes Slunce Autor: Wikimedia Commons
Měření paralaxy při přechodu Venuše přes Slunce
Autor: Wikimedia Commons

Po řadě výpočtů se v roce 1771 astronomům podařilo s již poměrně malou odchylkou stanovit naší vzdálenost od Slunce, potažmo vzdálenosti všech planet ve Sluneční soustavě. A nejen vzdálenost, ale i jejich skutečnou velikost, která se již dala ze známé vzdálenosti a úhlového průměru snadno odvodit. Při další dvojici přechodů v letech 1874 a 1882 byla vzdálenost ještě dále upřesněna. Dnes však například můžeme vzdálenost Venuše od Země změřit přímo radarem, a z toho s nevídanou přesností odvodit i vzdálenost Země od Slunce. Přechod Venuše už tedy nemá takový význam, ale je zajímavé si uvědomit, že dříve na něm byly do značné míry závislé naše znalosti o tělesech Sluneční soustavy a že astronomové na něj museli čekat i dlouhá desetiletí.

Zdroje a doporučené odkazy:
[1] Jak se měří vzdálenosti ve vesmíru? (část 1: Sluneční soustava)
[2] Horrocks, Crabtree and the 1639 transit of Venus
[3] Astronomy Basics: How Do they Know That (Part 1)
[4] Transit of Venus and the Distance to the Sun

Převzato: Hvězdárna a planetárium Plzeň



O autorovi

Štítky: Přechod Venuše, Měření vzdálenosti


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »