Úvodní strana  >  Články  >  Sluneční soustava  >  Polární záře na Jupiteru očima družice Chandra

Polární záře na Jupiteru očima družice Chandra

Rentgenové záření v polárních oblastech planety Jupiter
Autor: NASA/JPL-Caltech/SwRI/MSSS

Nová pozorování rentgenového záření ukázala, že polární záře – na severní a jižní polokouli planety Jupiter – reagují rozdílně na obou pólech. To je nepochopitelné v porovnání se Saturnem nebo Zemí, kde jsou polární záře na severní a jižní polokouli vzájemným zrcadlovým obrazem. Poslední pozorování rentgenového záření jsou podnětná pro současné teoretické modely, které vysvětlují podstatu polárních září na Jupiteru. Vědci doufají, že na základě kombinace nových pozorování z rentgenových observatoří Chandra a XMM-Newton společně s daty ze sondy Juno se dozvědí více o zdrojích vzniku aurory na obří planetě.

Na základě dat z evropské astronomické družice XMM-Newton a Chandra X-ray Observatory (NASA) tým vědců vytvořil mapy emise rentgenového záření na Jupiteru a identifikoval „horkou skvrnu“ záření na každém pólu planety. Každá z těchto skvrn pokrývala oblast srovnatelnou přibližně s polovinou zemského povrchu. Vědci zjistili, že horké skvrny měly velmi odlišné charakteristiky. Rentgenová emise na jižním pólu planety Jupiter nepřetržitě pulsovala v periodě 11 minut, avšak rentgenové záření přicházející z okolí severního pólu bylo nevyzpytatelné, jeho intenzita se sice zvyšovala a zase klesala – avšak zdánlivě nezávisle na emisi v oblasti jižního pólu.

Jupiter je v tomto ohledu mimořádně záhadný. Rentgenové paprsky polárních září doposud nebyly pozorovány na obřích planetách ve Sluneční soustavě. Jupiter se rovněž odlišuje od Země, kde polární záře na jejím severním a jižním pólu jsou obvykle vzájemným zrcadlovým obrazem jedna vůči druhé, protože magnetická pole na obou polokoulích jsou velmi podobná.

K pochopení skutečnosti, jak Jupiter produkuje rentgenové záření v oblasti polárních září, vědecký tým plánuje zkombinovat nová nadcházející data z kosmických observatoří Chandra a XMM-Newton s informacemi z kosmické sondy Juno (NASA), která v současné době krouží kolem planety. Jestliže astronomové budou moci navázat aktivitu rentgenového záření na fyzikální změny pozorované současně aparaturou na sondě Juno, pak možná budou schopni objevit procesy, které generují vznik polárních září na Jupiteru.

Magnetosféra v okolí obří plynné planety Jupiter Autor: NASA/CXC/M.Weiss
Magnetosféra v okolí obří plynné planety Jupiter
Autor: NASA/CXC/M.Weiss
Jedna teorie, kterou pozorování sondy Juno mohou pomoci potvrdit nebo vyvrátit, je, že rentgenové záření polárních září na Jupiteru vzniká na základě interakcí na rozhraní mezi magnetickým polem Jupitera, které je generováno elektrickými proudy v nitru planety, a slunečním větrem, což je proud částic proudících vysokými rychlostmi ze Slunce. Interakce mezi slunečním větrem a magnetickým polem Jupitera může způsobit následné „vibrace“ a vyvolat vznik magnetických vln. Nabité částice mohou „surfovat“ po těchto vlnách a uvolňovat energii. Srážky těchto částic s atmosférou Jupitera vytvářejí jasné záblesky rentgenového záření pozorované družicemi Chandra a XMM-Newton. V rámci této teorie by intervaly v trvání 11 minut představovaly čas pro pohyb vlny podél siločar magnetického pole Jupitera.

Velkou otázkou je, jak Jupiter dodává částicím ve své magnetosféře – což je oblast ovládaná magnetickým polem planety – velké množství energie potřebné pro vyzáření rentgenových paprsků. Část rentgenové emise pozorovaná družicí Chandra může být vyvolána pouze v případě, že Jupiter urychluje ionty kyslíku na tak vysokou energii, že všech osm elektronů z atomu kyslíku je odtrženo a následně se prudce srážejí s atmosférou. Astronomové doufají, že se jim podaří určit, jaký je účinek těchto částic na samotnou planetu v oblasti pólů při srážkách rychlostí několika tisíc kilometrů za sekundu. Mohou tyto částice o vysokých energiích ovlivnit počasí na Jupiteru a chemické složení jeho atmosféry? Mohou vysvětlit anomální vysoké teploty zjištěné v některých oblastech atmosféry planety? To jsou otázky, na které observatoře Chandra, XMM-Newton a Juno snad budou schopné v budoucnu odpovědět.
 

Zdroje a doporučené odkazy:
[1] chandra.harvard.edu

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Polární záře, Chandra X-ray Observatory, Planeta Jupiter


19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »