Úvodní strana  >  Články  >  Sluneční soustava  >  Rosetta hlasí odkrytý led na kometě

Rosetta hlasí odkrytý led na kometě

Obnažený led na jádru komety 67P/Čurjumov-Gerasimenko
Autor: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Podrobné fotografie kamery s vysokým rozlišením na sondě Rosetta odhalily více než stovku míst s odhaleným vodním ledem na povrchu jádra komety 67P/Čurjumov-Gerasimenko.

Rosetta nyní obíhá ve vzdálenosti asi 200 km od jádra komety, ale protože dříve ještě jádro nebylo tak aktivní, mohla obíhat blíže a díky tomu kamera OSIRIS pořídila množství velmi detailních snímků povrchu komety. Nově uveřejněná studie v časopisu Astronomy & Astrophysics se zaměřila na mnoho jasných skvrn vodního ledu, viditelného na různých místech jádra.

Jak víme z pozorování komet, z jejich jádra se uvolňují plyny díky sublimaci různých druhů ledu. Jak letí kometa blíže ke Slunci, vodní led, nebo například led oxidu uhličitého se mění v plyn a ten potom vytváří obálku kolem jádra komety (komu) a nebo ohon komety. Plyny s sebou strhávají také prachové částice. Část prachu však zůstává na povrchu jádra komety, nebo padá zpět a pokrývá tak jádro komety tenkou vrstvou materiálu, který zakrývá jasně bílý led. To odpovídá představě, že jádra komet, tak, jak je pozorujeme, jsou velmi tmavá tělesa.

Rosetta však přesto detekuje uvolňující se plyny ledu vodního a ledů oxidu uhelnatého a uhličitého, které pocházejí z bohatých podpovrchových vrstev. Díky detailním snímkům přístroje OSIRIS vědci nalezli na 120 oblastí, které jsou více než desetkrát jasnější, než okolní povrch. Některé světlé skvrny jsou seskupeny v malé oblasti, jinde se jedná o izolované skvrny. Mnohde to vypadá jako balvany, které odhalují svůj světlý povrch ke kamerám sondy.

Barevný kompozit čtyř oblastí s vodním ledem viditelným na povrchu jádra komety 67P Autor: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Barevný kompozit čtyř oblastí s vodním ledem viditelným na povrchu jádra komety 67P
Autor: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Světlé balvany nebo skupiny balvanů jsou často k nalezení pod útesy, což by napovídalo místům s nedávnou erozí, která vedla k odhalení čistého ledu z podpovrchových vrstev. Občas ale nalézáme také ojedinělé útvary nesouvisející s okolním terénem. U těch je předpoklad, že byly v předchozí aktivitě komety vyvrženy do prostoru, ale nedosáhly únikové rychlosti z gravitačního pole jádra a spadly proto zpět.

Vzhledem k tomu, že světlé útvary jsou často k nalezení spíše ve stinných místech a to bez výrazných změn v průběhu jednoho měsíce a vzhledem k tomu, že jejich barva je spíše k modrému okraji spektra, v kontrastu k červenavému odstínu prašného povrchu, potvrzuje to, že jde o led. Přesněji řečeno s největší pravděpodobností jde o vodní led. Protože fotografie vznikaly v době, kdy bylo jádro komety ještě dál od Slunce, kde prakticky nedochází k rychlému odpařování vodního ledu (max. 1 mm a hodinu), nemělo by jít o CO nebo CO2 led, protože ten by rychle vysublimoval do okolního vesmíru.

Ledové bloky na povrchu jádra komety 67P Autor: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Ledové bloky na povrchu jádra komety 67P
Autor: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Zajímavé také je, že laboratorní testy na Zemi odhalily, že už 1 mm silná vrstva prachu je schopna zcela ukrýt před kamerami jakýkoli led, schovaný pod ním. Je tedy možné, že téměř jednolitě temný povrch jádra je pouze tenkou vrstvou prachu a organického materiálu, který zakrývá čistý led pod ním. Vědci také odhadli, že na snímcích spatřené světlé struktury by mohly být ledem odkrytým ještě při minulém návratu komety ke Slunci, přičemž ledové bloky byly následně přemístěny do zastíněných oblastí, kde vydržely dodnes. Další uvažovanou možností je, že ve větší vzdálenosti od Slunce dokáže sublimující led oxidů uhlíku přemisťovat větší bloky materiálu obsahujícího vodní led.

Jak se nyní bude kometa blížit ke Slunci, můžeme očekávat odhalení dalších a také větších světlých oblastí na povrchu jádra komety.

Zdroje a doporučené odkazy:
[1] ESA: Rosetta
[2] Kometa 67P na webu Astro.cz



O autorovi

Martin Gembec

Martin Gembec

Narodil se v roce 1978 v České Lípě. Od čtení knih se dostal k pozorování a fotografování oblohy. Nad fotkami pak vyprávěl o vesmíru dospělým i dětem a u toho už zůstal. Od roku 1999 vede vlastní web a o deset let později začal přispívat i na astro.cz. Nejraději fotografuje noční krajinu s objekty na obloze a komety. Od roku 2019 je vedoucím planetária v libereckém science centru iQLANDIA a má tak nadále možnost věnovat se popularizaci astronomie mezi mládeží i veřejností.

Štítky: 67p, Sonda Rosetta, 67P/Čurjumov-Gerasimenko


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »