Úvodní strana  >  Články  >  Sluneční soustava  >  Více než polovina vody na Zemi pochází ze slunečního větru

Více než polovina vody na Zemi pochází ze slunečního větru

Sluneční vítr vytváří v povrchových vrstvých kosmického prachu molekuly hydroxylové skupiny OH a vody
Autor: Curtin University

Voda je zásadní pro život na Zemi a někteří odborníci tvrdí, že bychom měli vypít denně alespoň dva litry jako součást zdravého životního stylu. Avšak na druhou stranu – odkud se veškerá voda vzala? Teče z místních řek, přehrad a vodonosných vrstev. Avšak kde má voda svůj původ? V geologických obdobích pronikly živé organismy prostřednictvím vodních cyklů do atmosféry, řek, oceánů, hornin pod našima nohama a dokonce i skrz hluboké vrstvy naší planety. Ale co bylo předtím? Odkud se vzala voda na Zemi především? Vědci dlouho hledali odpovědi na tyto otázky.

Odborníci studovali nepatrné úlomky planetek k nalezení odpovědí – a dospěli k závěru, že déšť protonů ze Slunce možná vytvářel vodu během dlouhých věků na povrchu hornin a prachových částic napříč Sluneční soustavou. Ve skutečnosti více než polovina vody na Zemi mohla být vytvořena tímto způsobem a dostala se na naši planetu s padajícím kosmickým prachem.

Záhada vody

Víme, že pozemská voda pravděpodobně pochází z vnějších oblastí našeho systému z počáteční historie Sluneční soustavy. Takže co bylo tou prvotní dodávkou, která doručila vodu na Zemi? Asteroidy bohaté na vodu jsou v současné době nejlepšími kandidáty na dodání vody, stejně tak i uhlíko-vodíkových sloučenin, které společně možná vytvořily naši nádhernou obyvatelnou modrou planetu hemžící se životem.

Nicméně voda z asteroidů obsahuje specifický poměr běžného vodíku k těžším druhům – tzv. izotopům – nazývaných deuterium. Jestliže by veškerá voda na Zemi pocházela z asteroidů, očekávali bychom u ní stejný poměr – avšak pozemská voda obsahuje méně deuteria, takže zde musí být rovněž jiný zdroj vody v kosmickém prostoru s menším obsahem deuteria.

Jestliže něco víme o Sluneční soustavě a množství vodíku, tak přece jenom nižší poměr deuteria než na Zemi je v samotném Slunci. To nás staví do poněkud jiné role, třebaže je těžké přijmout fakt, že vodík v pozemské vodě může pocházet právě ze Slunce.

Je napínavé, že bychom se nakonec mohli dopátrat správné odpovědi na tuto záhadu.

Nepatrné kousky asteroidů

V roce 2010 přistála zpět na Zemi sonda Hayabusa Japonské kosmické agentury JAXA, která byla vypuštěna za účelem odběru vzorků horniny z povrchu asteroidu Itokawa a jejich dopravy na Zemi. V roce 2017 byli vědci docela úspěšní, když byly rozlišeny tři mimořádně vzácné částice minerálů z odebraného vzorku, každá zhruba o šířce lidského vlasu.

Asteroid Itokawa na snímku ze sondy Hayabusa Autor: JAXA
Asteroid Itokawa na snímku ze sondy Hayabusa
Autor: JAXA
Úmyslem odborníků bylo studovat vnější povrch těchto prachových částic a novým způsobem se podívat, jestli byly ovlivněny „kosmickým zvětráváním“. Jedná se o kombinaci procesů, které jsou známy a které ovlivňují veškeré povrchy vystavené kosmickému prostředí, jako například škodlivé galaktické kosmické záření, dopady mikrometeoritů, sluneční záření a sluneční vítr.

Pracovali ve velkém týmu zahrnujícím experty ze tří kontinentů a využívali přitom relativně novou techniku nazvanou ´atomová sondážní tomografie´, která posloužila k analýze nepatrných vzorků na úrovni atomů. To jim umožnilo změřit množství a pozice jednotlivých atomů a molekul v trojrozměrném (3D) rozvrstvení.

V blízkosti povrchu částic z planetky Itokawa byly objeveny vrstvičky bohaté na hydroxylovou skupinu OH (obsahující jeden atom kyslíku a jeden atom vodíku) a, což je velmi důležité – vodu H2O (složenou ze dvou atomů vodíku a z jednoho atomu kyslíku).
Tento objev vody byl velmi neočekávaný! Na základě všeho, co víme, tyto minerály z asteroidu by měly být vysušené na kost.

Jak sluneční vítr vytváří vodu

Nejpravděpodobnějším zdrojem atomů vodíku nutných k pozdějšímu vytvoření této vody je sluneční vítr: ionty vodíku (atomy s chybějícím elektronem) proudící ze Slunce kosmickým prostorem, které se mezitím ukládají v povrchové vrstvě prachových částic.

Vědci testovali tuto teorii v laboratoři ozařováním ionty těžkého vodíku (deuteria) za účelem simulace vlivu slunečního větru na minerály podobné těm na asteroidech a zjistili, že tyto ionty reagují s částicemi minerálů a vážou z nich atomy kyslíku, čímž vytvářejí hydroxylové skupiny a vodu.

Voda vytvořená slunečním větrem představuje doposud neuvažovanou zásobárnu ve Sluneční soustavě. A co více, veškerý vzduchoprázdný prostor nebo celkové množství horniny napříč galaxiemi může být domovem pozvolna vytvořených zdrojů vody umocňovaných jejich slunci.

To je fantastická novinka pro budoucí pilotovaný kosmický výzkum. Život dávající zdroje vody mohou potenciálně rovněž poskytnout vodík a kyslík jako pohonné látky pro raketové motory pilotovaných kosmických lodí.

Zpět až na Zemi

Tudíž jak to prozrazuje souvislost původu vody na Zemi?

Když se Země a její oceány vytvářely, Sluneční soustava byla svázána s objekty od kilometrových rozměrů až po prachové částice velikosti kolem mikrometru. Tyto objekty a částice padaly na naši planetu (i jiné planety) již od té doby.

Na základě malých – kosmickým prostředím zvětralých – zrníček vědci odhadují, že metr krychlový prachu z asteroidů může obsahovat více než 20 litrů vody. Veškerý kosmický prach, který dopadl na Zemi v průběhu dlouhých věků, představuje spoustu vody ze Slunce (s menším množstvím deuteria), která by měla přicházet vedle těžké vody pocházející z velkých asteroidů.

Astronomové vypočítali, že přibližně směs 50 : 50 prachu bohatého na vodu a velkých asteroidů by dokonale odpovídala izotopickému složení pozemské vody.

A tak zatímco usrkáváte vodu ze své sklenice, přemýšlejte o tom, jak je neobvyklá polovina pozemské vody, která ve skutečnosti pochází ze Slunce.

 

Zdroje a doporučené odkazy:
[1] phys.org

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Hayabusa, Asteroid Itokawa, Sluneční vítr, Voda na Zemi


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »