Úvodní strana  >  Články  >  Vzdálený vesmír  >  Černé díry jsou budoucí gigantický zdroj energie, tvrdí opavští astrofyzikové

Černé díry jsou budoucí gigantický zdroj energie, tvrdí opavští astrofyzikové

Z rotace černých děr by se dala těžit mimořádně velká energie
Autor: ESO, ESA/Hubble, M. Kornmesser

Astrofyzikální proGResy z Opavy: Ačkoliv futuristické, nikoliv fyzikálně nereálné: Největším zásobníkem k těžbě čisté energie ve vesmíru by mohly být supermasivní černé díry, které se nacházejí ve středu galaxií. Jak známo, ze samotných černých děr sice neunikne ani světlo, ale v těsném okolí těchto mimořádně hmotných kosmických těles by se energie dala těžit díky jejich rotaci. Na tuto možnost se zaměřili ve svém vědeckém výzkumu i astrofyzikové z Fyzikálního ústavu Slezské univerzity v Opavě – Martin Kološ, Arman Tursunov a Zdeněk Stuchlík.

Tisková zpráva Fyzikálního ústavu Slezské univerzity v Opavě ze dne 16. února 2021

Současné znalosti fyzikálních vlastností černých děr jasně dokládají, že se tyto objekty otáčejí okolo své osy velmi rychle a jsou tak rezervoárem značného množství tzv. rotační energie. U typické supermasivní černé díry (o hmotnosti přibližně miliard hmotností Slunce) mluvíme o energii přibližně 1055 Joulů, což je sto bilionkrát (tedy o 14 řádů!) více než kolik energie je v daném okamžiku potřeba na celé zeměkouli! Opavští vědci nyní předpokládají, že tuto energii z okolí černé díry lze extrahovat, tzv. magnetickým Penroseovým procesem.

černá díra jako kosmická elektrárna

Již v roce 1969 zjistil britský fyzik Roger Penrose, čerstvý nositel Nobelovy ceny za fyziku, že v okolí rotující černé díry se dá získat obrovské množství energie díky jevu známému jako „strhávání časoprostoru“. Tento jev nastává i v okolí Země, ale v porovnání se supermasivní černou dírou je prakticky zanedbatelný. V roce 1977 fyzici Roger Blandford a Roman Znajek přišli s teorií, že energii může poskytnout rotující černá díra v magnetickém poli. Linie magnetického pole se vlivem strhávání časoprostoru zkroutí a vytvoří efektivní elektrický náboj. Jak se náboj vybíjí, rotační energie černé díry se extrahuje ven.

Pozdější studie ukázaly, že jde o vysoce účinný proces, s účinností přesahující 100 % (!) i pro velmi slabá magnetická pole. Jak výpočetní technika pokročila, vědci vložili své komplikovanější modely do výkonnějších počítačů a výsledky potvrdily možnost extrahovat energii v okolí černých děr s účinností mnohem vyšší než 100 %.  V našem případě je účinnost vztažená ke klidové energii částice (např. proton), jež je urychlována. Což, jak známo například v urychlovačích v CERNu, může přesáhnout magickou hranici 100 % opravdu mnohonásobně. Pochopitelně tedy nejde o „perpetuum mobile“ vytvářející energii z ničeho. Energie je částici dodávána na úkor rotační energie černé díry, jež je tímto procesem odčerpávána a rotace černé díry adekvátně zpomalena. Magnetické pole má roli katalyzátoru umožňujícího odčerpání rotační energie. Magnetizované supermasivní černé díry tedy fungují jako gigantické urychlovače částic.

účinnost až biliony procent

S jakou účinností přesně by se taková energie dala vytěžit, se zabývali vědci ze Slezské univerzity v Opavě. V sérii prací, které byly publikovány například v prestižním vědeckém časopise Astrophysical Journal, tvrdí, že extrakce energie z černé díry funguje ve třech základních režimech účinnosti: nízký, střední a ultra. V nízkém režimu se účinnost extrakce energie shoduje s účinností původního Penroseova procesu, přičemž dosahuje maximálně pouze 21 %. V mírném režimu se uvažuje předpoklad Brandforda a Znajeka a účinnost je již několik set procent. Ultraefektivní režim těžby energie může podle opavských fyziků nastat u typických supermasivních černých děr (Super-Massive Black Hole – SMBH). U nich lze přesáhnout stovky bilionů procent účinnosti. Za typickou SMBH si autoři představují černou díru, kterou lze najít ve středech většiny galaxií. Má hmotnost miliard hmotností Slunce a je obklopena magnetickým polem přibližně 10-100 tisíckrát silnějším než na povrchu Země. Třetí režim by mohl být v budoucnu klíčovým procesem těžby rotační energie černé díry a napájení zdrojů vysoké energie nebo napájením pohonů kosmických lodí. Něco jako „kosmická čerpací stanice“.

Navrhovaný proces přímo souvisí s různými vysoce energetickými jevy, které dnes vědci zkoumají ve zmíněné laboratoři CERN. Rozpad částic v blízkosti horizontu událostí supermasivní černé díry může přirozenou cestou překročit hodnoty energie dosažené v Large Hadron Colider, nejsilnějším urychlovači částic na Zemi, více než deset milionkrát! Pokud by se to v budoucnu podařilo ke zdroji energie v okolí černých děr „napojit“, měli bychom přístup k alternativnímu zdroji energie nepoměrně překonávajícího všechny možnosti dosavadních zdrojů.

Pokud odhlédneme od přímých aplikací, které jsou jistě velmi futuristické, publikované práce přispívají i k detailnějšímu poznání procesů v těsné blízkosti SMBH a ukazují, že tyto objekty nemusejí být až tak energeticky uzavřenými systémy, za jaké byly doposud obecně považovány.

Kontakty A DALŠÍ INFORMACE

Astrofyzikální proGResy z Opavy jsou komunikační platformou evropských projektů řešených na Fyzikálním ústavu Slezské univerzity v Opavě. Je zaměřená na komunikaci výsledků práce opavských astrofyziků a teoretických fyziků, zejména v oblasti teorie relativity a gravitace (velká písmena GR ve slově proGResy). Název je volně inspirován také workshopy RAGTime, které probíhají na Fyzikálním ústavu v Opavě déle než 20 let. Více informací na progresy.physics.cz.

Bc. Petr Horálek
PR výstupů evropských projektů FÚ SU v Opavě
Email: petr.horalek@slu.cz
Telefon: +420 732 826 853

RNDr. Martin Kološ, Ph.D.
Odborný asistent na Fyzikálním ústavu SU v Opavě
Email: martin.kolos@physics.slu.cz
Telefon: +420 553 684 395

RNDr. Arman Tursunov, Ph.D.
Odborný asistent na Fyzikálním ústavu SU v Opavě
Email: arman.tursunov@physics.slu.cz
Telefon: +420 553 684 286

prof. RNDr. Zdeněk Stuchlík, CSc.
Ředitel Fyzikálního ústavu SU v Opavě
Email: zdenek.stuchlik@physics.slu.cz

Mgr. Debora Lančová
Fyzikální ústav SU v Opavě
Email: debora.lancova@physics.slu.cz
Telefon: +420 776 072 756

doc. RNDr. Gabriel Török, Ph.D.
Garant evropského projektu HR Award
Email: gabriel.torok@physics.cz
Telefon: +420 737 928 755

 




O autorovi

Štítky: Černá díra


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »