Úvodní strana  >  Články  >  Vzdálený vesmír  >  Kolik váží Mléčná dráha? Observatoře HST a Gaia se to pokusily zjistit

Kolik váží Mléčná dráha? Observatoře HST a Gaia se to pokusily zjistit

Umělecké ztvárnění počítačového modelu naší Galaxie a poloh kulových hvězdokup
Autor: NASA/ESA/Hubble/L. Calçada

Naše Galaxie – Mléčná dráha – obsahuje odhadem asi 200 miliard hvězd. Avšak to je pouze špička ledovce – naše Galaxie je obklopena obrovským množstvím neznámého materiálu, tzv. temné (skryté) hmoty. Astronomové vědí o její existenci, protože dynamicky by se Mléčná dráha rozpadla na kusy, pokud by ji temná hmota nedržela svojí gravitací pohromadě. Astronomové by si přáli velmi přesně změřit hmotnost naší Galaxie a lépe porozumět tomu, jak se myriády galaxií v celém vesmíru zformovaly a jak se vyvíjely.

Skupina astronomů z Evropské jižní observatoře ESO, Space Telescope Science Institute, Johns Hopkins University Center for Astrophysical Sciences a University of Cambridge zkombinovala údaje z Hubbleova kosmického teleskopu HST a evropské astronomické observatoře Gaia ke studiu pohybů kulových hvězdokup, které obíhají kolem Galaxie. Rychleji se pohybují hvězdokupy, které jsou pod vlivem gravitačního působení galaxie, která je mnohem hmotnější. Astronomové dospěli k závěru, že naše Galaxie má hmotnost odpovídající 1,54 biliónům Sluncí. Je nutno říci, že většina hmotnosti připadá na temnou hmotu.

Nejlehčí galaxie mají hmotnost kolem miliardy hmotností Slunce, zatímco ty nejtěžší mohou mít až 30 biliónů Sluncí, což je zhruba 30 000× více. S hmotností 1,54 biliónu hmotností Slunce je naše Galaxie docela obyčejným hvězdným ostrovem co do jasnosti.

Předcházející odhady hmotnosti Mléčné dráhy se pohybovaly v rozmezí 500 miliard až 3 bilióny hmotností Slunce. Tato obrovská nejistota vznikla především z důvodu použití odlišných metod použitých pro měření rozložení temné hmoty – která představuje až 90 % naší Galaxie.

My prostě nemůžeme detekovat temnou hmotu přímo. To je to, co vede k velké nejistotě při určení hmotnosti Mléčné dráhy – můžeme přesně měřit pouze to, co můžeme pozorovat,“ říká Laura Watkins, astronomka na Evropské jižní observatoři ESO.

Vzhledem k nepolapitelné podstatě temné hmoty astronomové využili důmyslnou metodu k určení hmotnosti naší Galaxie, která spoléhá na měření rychlostí kulových hvězdokup – hustých uskupení hvězd, která obíhají kolem spirálního disku Mléčné dráhy ve velkých vzdálenostech.

Mnohem hmotnější galaxie urychlují své kulové hvězdokupy v důsledku gravitační přitažlivosti,“ říká N. Wyn Evans z University of Cambridge. „Většina dosavadních měření vedla k určení rychlosti přibližování nebo vzdalování hvězdokupy od Země, která však je rychlostí ve směru našeho pohledu. Avšak my jsme byli schopni změřit rovněž boční (tangenciální) pohyb hvězdokup a z něj absolutní rychlost, z které může být následně vypočítána hmotnost Galaxie.“

Rozložení kulových hvězdokup v okolí naší Galaxie Autor: NASA, ESA, and A. Feild (STScI)
Rozložení kulových hvězdokup v okolí naší Galaxie
Autor: NASA, ESA, and A. Feild (STScI)
Vědci využila data z druhé sady publikovaných měření družicí Gaia – která zahrnuje měření kulových hvězdokup až do vzdálenosti 65 000 světelných roků od Země – jako základ pro jejich studium.

Kulové hvězdokupy rozšiřují měření do větších vzdáleností. Astronomové tak zvažovali, jaké nejlepší stopaře využít ke změření hmotnosti naší Galaxie,“ říká Tony Sohn, astronom ze Space Telescope Science Institute.

Pozorování uskutečněná pomocí HST umožnila sledovat slabé a vzdálené kulové hvězdokupy až do vzdálenosti 130 000 světelných roků od Země, které byly rovněž zařazeny do studie. Protože HST pozoroval některé z těchto objektů po desetiletí, bylo rovněž možné velmi přesně určit rychlosti těchto kulových hvězdokup.

Byli jsme velmi šťastní, že máme k dispozici takovou kombinaci dat. Spojením měření 34 kulových hvězdokup družicí Gaia s 12 velmi vzdálenými hvězdokupami studovanými pomocí HST jsme mohli upřesnit hmotnost naší Galaxie způsobem, který nebyl možný bez těchto dvou kosmických observatoří,“ říká Roeland P. van der Marel, rovněž ze Space Telescope Science Institute.

Výsledky práce astronomů byly publikovány v časopise Astrophysical Journal.

Zdroje a doporučené odkazy:
[1] sci-news.com
[2] hubblesite.org

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Hmotnost Galaxie, Družice GAIA, HST, Kulové hvězdokupy, Naše Galaxie


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »