Související stránky k článku Sluneční radioastronomové z celého světa budou jednat v Praze

Rentgenové dvojhvězdy jsou aktivními galaktickými jádry v malém. I proto se na jejich výzkum často používá technik odladěných pro tyto mnohem větší systémy. Početným tým pracovníků Oddělení galaxií a planetárních systémů ASU si pokládal otázku, zda jsou pro tyto případy používané modely validní a zda nejsou podané informace zkreslené.

Skupina astronomů z USA, Japonska a Švýcarska objevila důkazy o možných zdrojích energie, které by mohly být odpovědné za ohřev sluneční koróny. Ve svém článku publikovaném v časopise Nature Astronomy výzkumníci popsali studium dat ze sondážní rakety FOXSI-2 (Focusing Optics X-ray Solar Imager) a to, co se jim podařilo odhalit. Procesy, které vedou k zahřátí hvězdné koróny na několik miliónů kelvinů v porovnání s mnohem chladnější fotosférou (u Slunce je to asi 5 800 K), stále nejsou dobře prozkoumány.
Širokoúhlý pohled na korelátor ALMA - eso1253Autor: ESOALMA korelátor propojí jednotlivé antény do jednoho obřího teleskopu
Na odlehlém stanovišti ve vysoké nadmořské výšce v chilských Andách byl nedávno instalován a otestován jeden z nejvýkonnějších superpočítačů na světě. Podařilo se tak docílit jednoho z významných milníků na cestě ke kompletaci teleskopu ALMA (Atacama Large Millimeter/submillimeter Array), který patří k nejkomplikovanějším pozemním astronomickým přístrojům v historii. Jednoúčelový superpočítač ALMA korelátor obsahuje přes 134 milionů procesorů a provede 17 biliard operací za sekundu. To je srovnatelné s nejrychlejšími univerzálními superpočítači, které jsou dnes k dispozici.

Vojtěch Šimon z Astronomického ústavu AV studoval dlouhodobá pozorování dvou kataklyzmických proměnných, které v době astronomicky velice nedávné vybuchly jako klasické novy. Zejména na základě analýz světelných křivek si všímá změn, ke kterým v obou sledovaných systémech dochází. Oba tyto objekty v současnosti aspoň občas procházejí stádii vzplanutí trpasličích nov a zřejmě na povrchu bílého trpaslíka akumulují materiál pro další výbuch klasické novy.

Slunce jako by se chtělo zavděčit i těm, kteří nemohli 21. srpna pozorovat jeho úplné zatmění. Stačí si nasadit sluneční brýle nebo například svářečský filtr, zaklonit hlavu a sledovat pihy na sluneční kráse vyvolané magnetickým polem.
obálka kolem R Sculptoris - ALMA - eso1239Autor: ALMA (ESO/NAOJ/NRAO)Nová pozorování odhalují tajemství umírající hvězdy
Tisková zpráva Evropské jižní observatoře (039/2012): Astronomové pracující s dalekohledem ALMA (Atacama Large Millimeter/submillimeter Array) objevili neočekávanou spirální strukturu obklopující starou hvězdu R Sculptoris. Je to vůbec poprvé, co se podařilo najít podobný útvar spojený s vnější sférickou obálkou u hvězdy ve fázi rudého obra. Poprvé mají astronomové také možnost získat informace o takovéto spirále ve třech rozměrech. Neobvyklý útvar pravděpodobně vznikl působením neviditelného průvodce, který kolem rudého obra obíhá. Tato práce je jedna z prvních, která byla zveřejněna na základě dat získaných přístrojem ALMA ve fázi počátečního vědeckého využití (Early Science phase). Článek byl zveřejněn v odborném časopise Nature.

Jak moc nás ovlivňuje sluneční aktivita? O efektech na technologické prvky již bylo napsáno mnoho. Studie, na níž se podílel i Michal Švanda ze Slunečního oddělení ASU, ukazuje, že svůj dopad má aktivita naší hvězdy i na dřevařský průmysl. Zdá se, že by mohla ovlivňovat výskyt kůrovcových kalamit.

V pokračování našeho povídání o Slunci s RNDr. Michalem Sobotkou, DSc. se v tomto díle zaměříme ponejvíce na sluneční povrch a korónu.
Fotosféra i chromosféra jsou jistě témata, která sebou přináší mnoho zajímavého a poutavého. Co se děje ve fotosféře a chromosféře? Jakou mají teplotu? Proč s řídnoucí hmotou teplota na povrchu Slunce stoupá a dokonce v koróně, sluneční atmosféře, dosahuje milionových hodnot? Jaké jsou teorie k vysvětlení těchto jevů? Co se děje s hmotou na povrchu i nad ním? Skvrny, protuberance, erupce, výtrysky hmoty…
molekuly glykolaldehydu v oblaku plynu u mladé dvojhvězdy IRAS 16293-2422V okolí mladé hvězdy byly objeveny stavební kameny života
Tisková zpráva Evropské jižní observatoře (034/2012): Tým astronomů využívající zařízení ALMA (Atacama Large Millimeter/submillimeter Array) objevil molekuly cukru v oblaku plynu obklopujícím mladou hvězdu slunečního typu. Je to poprvé, co byl cukr nalezen ve vesmíru poblíž takové hvězdy. Objev ukazuje, že stavební kameny života se nacházejí ve správný čas na správném místě, aby se mohly stát součástí planet vznikajících kolem hvězd.

Mezi nejzajímavější projevy sluneční aktivity patří bezpochyby sluneční erupce. Ty jsou často spojovány s ovlivněním technologických prvků na Zemi a v jejím bezprostředním okolí. K tomuto ovlivnění však dochází zejména v případě, kdy je erupce spojena s výronem hmoty do koróny. Ne všechny erupce jsou s těmito výrony spojeny a navíc existuje i třída erupcí, u nichž sice výron odstartuje, ale nedostane se ze sféry vlivu Slunce. O jedné takové nepovedené erupci pojednává studie, na níž se podílel i Marian Karlický ze Slunečního oddělení ASU.

Astronomický ústav Akademie věd má v Ondřejově nedaleko Prahy svou observatoř. Její součástí se také sluneční oddělení, a právě s vedoucím tohoto oddělení RNDr. Michalem Sobotkou, DSc., budeme o sluníčku, naší nejbližší hvězdě hovořit.

Se zlepšující se dostupností rutinních pozorování chladných hvězd se o dění v jejich bezprostředním okolí dozvídáme stále větší podrobnosti. V mnoha případech nám získané údaje ukazují, že jsou tyto hvězdy velmi podobné s naším Sluncem, tedy přinejmenším pokud se týká hvězd chladnějších spektrálních typů. Petr Heinzel ze Slunečního oddělení ASU a z Vratislavské univerzity byl u studie, která určovala parametry hvězdné protuberance, jež opakovaně zakrývala velmi dlouho trvající erupci probíhající na téže hvězdě.

Výskumný tím vedený Ivanom Ramirezom z University of Texas v Austine identifikoval prvého kandidáta na súrodenca Slnka – hviezdu, ktorá sa zrodila z rovnakého mračna plynu a prachu. Ramirezove metódy zároveň pomôžu astronómom nájsť ďalších slnečných súrodencov, čo by mohlo viesť k hlbšiemu pochopeniu toho, ako a kde sa vytvorilo naše Slnko a ako sa naša Slnečná sústava stala vhodným miestom pre život. Štúdiu publikovali v časopise Astrophysical Journal.

Jakým způsobem ovlivňuje přítomnost magnetického pole chování látky v akrečním disku v okolí černé díry? Přesně tuto otázku si položili autoři představované práce, mezi nimiž byl i Vladimír Karas z ASU. Studie, provedená s pomocí numerické simulace, poukazuje na nezanedbatelný vliv magnetismu v extrémních akrečních discích. Některé z popisovaných jevů by mohly vysvětlovat například proměnnost centra naší Galaxie.

Využitím nových metod a dat z evropské astronomické družice GAIA astronomové z univerzity v Torontu odhadli, že rychlost Slunce na oběžné dráze kolem středu naší Galaxie je přibližně 240 kilometrů za sekundu. Kromě toho dospěli při výpočtech k závěru, že vzdálenost Slunce od galaktického centra je přibližně 7,9 kiloparseků (kpc) – tedy téměř 26 000 světelných roků.

Nedávná pozorování pořízená například Hubbleovým vesmírným dalekohledem nebo astrometrickou družicí Gaia přinesla detailní informace o pohybech hvězd uvnitř hvězdokup. Z nich vyvstaly nové otázky týkající se dlouhodobého dynamického vývoje těchto samogravitujících systémů. Václav Pavlík z ASU byl hlavním autorem teoretické studie, která posuzovala vliv počátečního rozdělení směrů rychlostí hvězd ve hvězdokupě na její vývoj.

Ještě před několika dny jsme mohli pozorovat večerní přelety Mezinárodní vesmírné stanice. Zdatně tak sekundovala triu jasných hvězd, tedy planetám Jupiter, Mars a Saturn. Dobře tuto situaci zachytil například jeden z našich čtenářů Jiří Šíp, jak je vidět v úvodním obrázku. Mezitím se přelety ISS přesouvají na denní oblohu a to nabízí možnost spatřit její mihnutí přes sluneční disk.

Polární záře je fascinující přírodní jev, který byl pozorován a zkoumán po tisíce let. Dlouho jsme je měli spojeny jen s naší Zemí, s průzkumem Sluneční soustavy se ale ukázalo, že podobné jevy lze nalézt i u jiných planet. Od toho již není daleko k hledání polárních září u extrasolárních planet, kde je lze logicky očekávat. Ale polární záře u hvězd? Jiří Kubát z ASU byl u studie, která se zabývala možnou detekcí ekvivalentů polárních září v atmosférách horkých hvězd.

Koróna je bezpochyby nejtajemnější vrstvou sluneční atmosféry. Je obtížné ji pozorovat, neboť je horká a její vlastní záření se nachází především v ultrafialové a rentgenové oblasti spektra, není tedy ze Země pozorovatelná. Proč je koróna horká je otázkou, která budí ze sna desítky slunečních fyziků již více než šest desetiletí. Jednou z možností je neustálý ohřev tzv. nanoerupcemi. Na vliv nanoerupcí na rovnováhu koronálního plazmatu se s pomocí modelu podívali Elena Dzifčáková a Jaroslav Dudík z ASU.

V literatuře přibývá studií prokazujících, že černé díry jsou ve vesmíru téměř všudypřítomné. Od těch hvězdných černých děr vyskytujících se například v kompaktních dvojhvězdách po černé veledíry v jádrech galaxií a kvazarů. Jejich detekce v drtivé většině případů spoléhá na přítomnost okolní látky, která kolem černé díry vytváří akreční disk. Parametry černých děr jsou pak z vlastností záření disku určovány. Ondřej Kopáček a Vladimír Karas z ASU publikovali teoretickou práci vyšetřující chování částic na orbitách v okolí černých děr.