Úvodní strana  >  Články  >  Kosmonautika  >  Cesta do hlubin sluneční atmosféry

Cesta do hlubin sluneční atmosféry

Sluneční sonda Solar Probe Plus
Autor: NASA/Johns Hopkins University Applied Physics Laboratory

Na srpen 2018 plánuje NASA vypuštění sluneční kosmické sondy Solar Probe Plus, která se k povrchu Slunce přiblíží až na 6 miliónů kilometrů – pro porovnání, planeta Merkur se může nejvíce přiblížit ke Slunci na 46 miliónů km. Dostane se tak sedmkrát blíže, než dosavadní kosmické sondy. Bude přitom vystavena intenzivnímu slunečnímu záření. Proto bude celá sonda a její přístrojové vybavení chráněno slunečním štítem z uhlíkových kompozitů o tloušťce 11,43 cm, který bude odolávat teplotám až 1370 °C.

Sonda Solar Probe Plus bude navedena na eliptickou oběžnou dráhu kolem Slunce, přičemž uskuteční sedm průletů kolem Venuše. Plánovaná životnost sondy je téměř sedm let. Vzhledem k blízkosti Slunce budou postačovat pouze malé panely slunečních baterií o ploše 1,55 metrů čtverečních.

Na své palubě ponese sonda čtyři hlavní vědecké přístroje. Startovní okno se otevírá v období od 31. července do 19. srpna 2018. Ke startu bude použita nosná raketa Delta IV-Heavy s urychlovacím stupněm. V průběhu největšího přiblížení ke Slunci se bude sonda pohybovat rychlostí až 200 kilometrů za sekundu.

Na Slunci dochází příležitostně k explozivnímu výronu nabitých částic, které se vydají směrem k Zemi a často doslova rozvrátí elektrické rozvodné sítě, ohrozí vysoko letící letadla a satelity v kosmickém prostoru. Když oblaka nabitých částic o vysokých energiích uniknou ze Slunce, mohou se v tomto škodlivém záření doslova koupat kosmické lodě, astronauti i povrchy planet. Pochopení toho, jakým způsobem Slunce občas emituje tyto nabité částice o vysokých energiích, může pomoci vědcům předpovídat tzv. kosmické počasí. Pokud budeme vědět, kdy sluneční energetické částice mohou narazit do Země, může to pomoci lidstvu učinit preventivní opatření.

Dráha sondy Solar Probe Plus kolem Slunce Autor: Johns Hopkins University Applied Physics Laboratory
Dráha sondy Solar Probe Plus kolem Slunce
Autor: Johns Hopkins University Applied Physics Laboratory
Astronomové z Draper Laboratory a Smithsonian Astrophysical Observatory (SAO) doufají ve vyřešení této doposud neobjasněné vědecké záhady pomocí vývoje důmyslných senzorů pro novou sluneční sondu NASA. Její návrh a výrobu realizuje Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. Během výzkumu uskuteční sonda 24 průletů kolem Slunce v průběhu sedmi roků, přičemž ustanoví nový rekord a stane se nejrychleji se pohybujícím lidmi vyrobeným tělesem, když prosviští ve vzdálenosti o 37,6 miliónu kilometrů blíže k povrchu naší hvězdy, než jakákoliv dřívější kosmická sonda určená k výzkumu Slunce.

Sonda NASA s názvem Solar Probe Plus – první mise, která bude prolétávat horními vrstvami sluneční atmosféry a téměř se „dotkne“ Slunce – bude shromažďovat data o mechanismech, které ohřívají korónu a urychlují částice slunečního větru, což je nepřetržitý tok nabitých částic unikajících ze Slunce. To jsou dva procesy závisející na elementární funkci v komplexním propojeném systému spojujícím Slunce a okolní prostor Země. Jedná se o systém, který může ovlivňovat změny kosmického počasí a mít dopad i na umělé družice a sondy.

Již mnoho let astronomové studují Slunce, avšak dosud nikdy přímo z oblasti uvnitř sluneční atmosféry,“ říká Seamus Tuohy, ředitel Space Systems Program Office, Draper Laboratory. „Taková mise vyžaduje kosmickou sondu a přístroje schopné odolávat extrémní radiaci při vysokých rychlostech pohybu a drsným slunečním podmínkám.“

Výzkum bude výhradně zaměřen na studium většiny hojně se vyskytujících částic ve sluneční atmosféře a slunečního větru – elektrony, protony a héliová jádra – „a kromě toho bude odpovídat na základní vědecké otázky, zaměřené na lepší porozumění rizikům kosmického počasí, představující nebezpečí pro moderní komunikační systémy, letectví a energetické soustavy, na kterých jsme závislí,“ říká Justin C. Kasper, hlavní vědecký pracovník Smithsonian Astrophysical Observatory a University of Michigan. „Existuje mnoho systémů, na kterých je náš moderní svět závislý – telekomunikace, GPS, satelity a elektrické rozvodné sítě – to vše může být přerušeno na delší dobu, pokud by nastala velká sluneční bouře. Připravovaná sonda Solar Probe Plus nám bude pomáhat předpovídat a zvládat dopady kosmického počasí na společnost.“

Zdroje a doporučené odkazy:
[1] cfa.harvard.edu
[2] solarprobe.jhuapl.edu

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Okolí slunce, Solar Probe Plus, Kosmické počasí


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »