Úvodní strana  >  Články  >  Osobnosti  >  Rozhovor: David Čapek - Mizení sodíku z meteoroidů

Rozhovor: David Čapek - Mizení sodíku z meteoroidů

Spektrum meteoru
Spektrum meteoru
Země se denně střetává s drobnými kamínky, které nám na obloze vytváří krásné meteory. Systematické sledování meteorů přineslo zajímavé zjištění, že v některých z nich chybí sodík. Ten jinak spolu s několika dalšími prvky svítí ve všech meteorech. Výzkumem tohoto jevu se zabývá dr. David Čapek z Astronomického ústavu AV ČR.

Z čeho dokážete zjistit chemické složení meteorů?
Chemické složení meteorů jsme schopni zjistit z pozorování jejich spekter. Ta jsou charakteristická jasnými emisními čarami a to především čarami hořčíku, sodíku a železa. O něco méně výrazná je například čára vápníku a některých dalších prvků.

Vy jste našli řadu meteorů, ve kterých právě sodík chybí. Čím se to dá vysvětlit?
Kolegové z oddělení meziplanetární hmoty publikovali práci, ve které uveřejnili asi stovku pozorovaných spekter, především sporadických meteorů. U nich zjistili, že čára sodíku je méně jasná, než by odpovídalo předpokladu, že materiál je chondritický. Tyto meteory rozdělili do tří skupin. V první skupině jsou meteory pouze se spektrálními čarami železa. To zřejmě odpovídá železným meteoritům, u kterých došlo k ochuzení o sodík už v mateřském asteroidu v důsledku magmatické diferenciace. Druhá skupina jsou tělesa, jejichž dráhy jsou typu Halleyovy komety. U nich se předpokládá, že ke ztrátě sodíku došlo na povrchu mateřských komet, které byly dlouhodobě bombardovány částicemi kosmického záření. Třetí skupina je typická tím, že se přibližuje ke Slunci na méně než 0,2 astronomické jednotky (Merkur má 0,38). Předpokládá se, že k úniku sodíku došlo v tomto případě důsledkem ohřevu v blízkosti Slunce.

To ochuzení o sodík jste pozorovali například u meteorického roje Geminid. Jak tento roj přišel o sodík?
U kometárních meteoroidů, jako jsou například Geminidy, předpokládáme, že jsou to tělesa, která si nelze představit jako malé monolitické kaménky, jako je například většina meteoritů, které dopadly na zemský povrch. Spíše se jedná o jakési slepence malých prachových částeček, kterým říkáme prachové koule. Jsou to tělesa, která mají velkou porozitu. My předpokládáme, že sodík je zřejmě v jednotlivých prachových zrnech obsažen zejména v alkalických živcích, jílových minerálech, případně vápenatých sklech. Když se meteoroidy s touto strukturou dostanou do blízkosti Slunce, tak sodík začne v důsledku vysoké teploty difundovat na povrch těchto malých zrníček. Následně se díky tepelné desorpci sodík uvolní do pórového systému meteoroidu a proudí k povrchu, odkud uniká do meziplanetárního prostoru.

Na čem závisí rychlost unikání sodíku z meteorického tělesa?
V prvé řadě závisí na nejmenší vzdálenosti od Slunce a tomu odpovídající teplotě, kterou meteoroid dosáhne. Podle našich výpočtů je potřeba, aby se meteoroid přiblížil na méně než 0,2 astronomické jednotky. Pak už se dá hovořit o podstatném úniku sodíku. Další důležitou vlastností, je zrnitost meteoroidu, tzn. velikost zrníček, ze kterých sestává.

Jak dlouho trvá přibližně trvá, než se z meteorického tělesa všechen sodík vypaří?
My jsme prováděli výpočty pro meteorický roj Geminidy a u nich jsme zjistili, že k podstatnému úniku sodíku může dojít už za 2000 let. Ale obecně to říct nelze, to závisí na mnoha faktorech, jak už jsem uvedl: hlavně na vzdálenosti od Slunce a zrnitosti. V některých případech může stačit jediný průlet perihéliem, pokud je přitom vzdálenost od Slunce dostatečně malá.

Prachové zrnko v meteoroidu
Prachové zrnko v meteoroidu
Pomáhá vám měření množství sodíku, které chybí ve spektru meteoru, ke zjišťování vnitřní stavby meteorických tělísek?
Určitě ano. Například model, který jsme vyvinuli pro roj Geminid, nám potvrdil, že Geminidy nejsou monolitická tělesa, ale jsou to už výše zmíněné prachové koule. Podle našich výpočtů by z těles odpovídající velikosti, bez struktury prachové koule, nemohlo k úniku sodíku vůbec dojít.

Váš výzkum se týká těch nejmenších těles ve sluneční soustavě, tedy meteoroidů. Dá se váš výzkum nějak aplikovat na planetky?
Ano dá. Například existuje určitá možnost, že se některé asteroidy (které dnes mají perihélium dále než ony 0,2 astronomické jednotky) mohly někdy v minulosti přibližovat ke Slunci mnohem těsněji. V dnešní době by se to dalo dokázat tak, že bychom zjistili, že tyto planetky mají povrch ochuzený o sodík podobně jako meteoroidy.

Proč jste si z těch všech prvků, které ve spektrech meteorů vidíte, vybrali právě sodík?
K tomu nás vedly dva důvody. Jednak ten, že v některých meteorech pozorujeme úbytek sodíku a ne úbytek třeba hořčíku a potřebovali jsme tento fakt vysvětlit. Navíc sodík je ze zmíněných prvků nejtěkavější a on jediný mohl takto jednoduše utéci.

Rozhovor vznikl na základě přednášky Davida Čapka na pravidelném semináři Astronomického ústavu AV ČR. Semináře se konají zpravidla každé první pondělí v měsíci na pracovišti v Ondřejově. Převzato z - www.asu.cas.cz




O autorovi

Petr Sobotka

Petr Sobotka

Petr Sobotka je od r. 2014 autorem Meteoru - vědecko-populárního pořadu Českého rozhlasu. 10 let byl zaměstnancem Astronomického ústavu AV ČR v Ondřejově. Je tajemníkem České astronomické společnosti. Je nositelem Kvízovy ceny za popularizaci astronomie 2012. Členem ČAS je od roku 1995.

Štítky: David Čapek, Osobnost


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »