Úvodní strana  >  Články  >  Ostatní  >  Radiometrické a fotometrické veličiny v astronomii - Díl první

Radiometrické a fotometrické veličiny v astronomii - Díl první

Kulová hvězdokupa NGC 6397
Kulová hvězdokupa NGC 6397
Měření světelných veličin v astronomii je úloha zásadního významu. Že hvězdy svítí různě jasně vnímá již dítě v předškolním věku, pokud ovšem v současných poměrech má vůbec možnost hvězdnou oblohu spatřit. Proto také pokus o jakési změření jasnosti hvězd pochází již ze starověku. Hipparchos (asi 190 až asi 125 r. př. Kr.) rozdělil hvězdy podle jasnosti do šesti tříd ( bohužel klasifikoval jak se dodnes činí ve škole) takže nejjasnějším přisoudil klasifikaci 1, nejslabším 6. Poněkud nepříjemné matematické důsledky této skutečnosti se uplatňují i v současnosti.

V SI (Mezinárodní soustavě jednotek) představuje skupina radiometrických (týkajících se elektromagnetického záření v celém rozsahu vlnových délek) a fotometrických veličin (týkajících se jen viditelného světla) s jejich jednotkami koherentní soustavu, jejíž použití v astronomii je však poněkud omezené ze dvou důvodů: Z hlediska optiky je vzdálenost hvězd nedefinovaná a vyjma některých objektů jsou světelné zdroje na obloze bodové. To vedlo k zavedení veličin mimo soustavu SI a vedlejších jednotek. Navíc není vždy dodržena terminologie v SI.

Optické veličiny úzce souvisí s geometrií, proto je třeba zmínit doplňkovou veličinu prostorový úhel se značkou W. Prostorový úhel je část prostoru vymezená pláštěm nekonečného kužele(nebo jehlanu). Jeho jednotkou je steradián (sr). Steradián je prostorový úhel, který s vrcholem ve středu koule vytíná na povrchu této koule plochu s obsahem rovným druhé mocnině poloměru koule.

Pro výpočet velikosti prostorového úhlu plyne z definice:

W = S.r -2

Pokud je však myšlen prostorový úhel, jehož vrcholem je detektor záření, nikoliv zdroj záření, pak se v astronomii této jednotky nepoužívá. Místo ní se používá čtvereční stupeň:

1 □o = (p/180)2 sr,

tedy přibližně 1 □o = 0,0003046 steradiánu.

Plošný obsah hemisféry je zaokrouhleně 20 626 □o

Důležitým je vztah mezi úhlovým průměrem vrchlíku na sféře a prostorovým úhlem, který mu přísluší (či jeho obsahem). Jestliže je úhlový průměr vrchlíku j, pak prostorový úhel jemu příslušný je

W = 2p [1- cos(j/2)] sr.

Pro malé úhly vztah přechází na tvar W = p.j2/4 (rozvineme-li funkci kosinus na první dva členy Taylorova rozvoje).


Radiometrické veličiny

Zářivý tok

Každé těleso je zdrojem elektromagnetického vlnění, tedy vyzařuje energii, která se nazývá zářivou energií (Ue). Podíl zářivé energie a doby, za kterou byla vyzářena je vyzařovaný výkon, který se nazývá zářivý tok (Pe). Jeho jednotkou je 1 W.

Nějakou plochou prochází zářivý tok 1 W, jestliže při ustálených poměrech projde touto plochou zářivá energie 1 joule za 1 sekundu.

Pe = dUe/dt

Celkový výkon vyzařovaný do prostoru ze zdroje se nazývá celkový zářivý tok. V astronomii, pokud je myšlen celkový zářivý tok vyzařovaný hvězdou, se však tato veličina obvykle nazývá zářivý výkon nebo svítivost (L), případně bolometrická svítivost, což nesouvisí s pojmem svítivost v SI. Takto užívá pojmu např.Vanýsek. Šolc aj. pro bolometrickou svítivost užívají pojmu zářivý výkon, případně zářivost (což neodpovídá zářivosti v SI), zatímco svítivostí rozumí výkon vyzařovaný ve viditelné části spektra. Pro tu však SI zavádí pojem celkový světelný tok (viz níže). Pro zářivý tok používá Vanýsek značku "E", přičemž se vyhýbá názvu zářivý tok.

Nepříjemnost spočívající v rozdílu terminologie a značení je evidentní.

Zářivost

Ve SI zářivost (Ie) nějakého zdroje v určitém směru je podíl elementu zářivého toku dP vyzařovaného do nepatrného prostorového úhlu dW a tohoto prostorového úhlu.

Ie = dPe/dW

Jednotkou je 1W.sr-1. V případě izotropního zdroje (tj. zdroje, vyzařujícího stejně do všech směrů) je také Ie = P/W., tudíž celkový zářivý tok je pro izotropní zdroj Pc = 4pIe.

Lambertův zákon: V případě rovinné plošky, jejíž zářivost ve směru kolmém na její povrch je Ie0, je zářivost ve směru odkloněném od normály o úhel a

Ie = Ie0cosa

V důsledku toho zářivý tok do poloprostoru (W = 2p) je pouze

Pep = pIeo

Zářič s touto vlastností se nazývá "kosinový".

Intenzita vyzařování

Intenzita vyzařování (He) charakterizuje plošné zdroje záření. V daném místě zdroje je podílem elementu zářivého toku dPe vystupujícího do poloprostoru z elementu plochy dS a tohoto elementu plochy

He = dPe/dS

Jednotkou je 1 W.m-2.

Pro absolutně černé těleso lze vyslovit Stefanův - Boltzmannův zákon:

He = s.T4,

kde s = 2p5k4/(15h3c2) = (5,67051 ± 0,00019).10-8 W.m-2.K-4 je Stefanova-Boltzmannova konstanta,
T je termodynamická teplota tělesa,
h = (6,6260755 ± 0,0000040).10-34 J.s je Planckova konstanta,
k = (1,380658 ± 0,000012).10-23 J.K-1 je Boltzmannova konstanta a
c = 299 792 458 m.s-1 je rychlost světla ve vakuu.

Celkový zářivý tok (či zářivý výkon v astronomické terminologii) absolutně černé koule o poloměru R a termodynamické teplotě T je tedy

Pec= 4pR2s.T4 = 4pR2He

Reference:
[1] Klimeš B., Kracík J., Ženíšek A., Základy fyziky II (Academia, Praha 1972)
[2] Šindelář V., Smrž L., Nová soustava jednotek (SPN Praha, 1989)
[3] Šolc M., Švestka J. , Vanýsek V., Fyzika hvězd a vesmíru (SPN, Praha 1983)
[4] Vanýsek V., Základy astronomie a astrofyziky( Academia, Praha 1980)




Seriál

  1. Radiometrické a fotometrické veličiny v astronomii - Díl první
  2. Radiometrické a fotometrické veličiny v astronomii - Díl druhý
  3. Radiometrické a fotometrické veličiny v astronomii - Díl třetí


O autorovi

Miroslav Šulc

Miroslav Šulc

Narozen 1941, v roce 1963 promoval na přírodovědecké fakultě Univerzity J. E. Purkyně (dříve a nyní Masarykova univerzita) v oboru matematika-fyzika (s titulem promovaný fyzik-učitel). Od té doby zaměstnán jako učitel na střední škole. Od r. 1954 do r. 1986 externí spolupracovník brněnské hvězdárny. Od r. 1959 člen České astronomické společnosti. Od r. 1996 hospodář výboru SMPH. Od r. 2006 v definitivním důchodu.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »