Úvodní strana  >  Články  >  Ostatní  >  Radiometrické a fotometrické veličiny v astronomii - Díl první

Radiometrické a fotometrické veličiny v astronomii - Díl první

Kulová hvězdokupa NGC 6397
Kulová hvězdokupa NGC 6397
Měření světelných veličin v astronomii je úloha zásadního významu. Že hvězdy svítí různě jasně vnímá již dítě v předškolním věku, pokud ovšem v současných poměrech má vůbec možnost hvězdnou oblohu spatřit. Proto také pokus o jakési změření jasnosti hvězd pochází již ze starověku. Hipparchos (asi 190 až asi 125 r. př. Kr.) rozdělil hvězdy podle jasnosti do šesti tříd ( bohužel klasifikoval jak se dodnes činí ve škole) takže nejjasnějším přisoudil klasifikaci 1, nejslabším 6. Poněkud nepříjemné matematické důsledky této skutečnosti se uplatňují i v současnosti.

V SI (Mezinárodní soustavě jednotek) představuje skupina radiometrických (týkajících se elektromagnetického záření v celém rozsahu vlnových délek) a fotometrických veličin (týkajících se jen viditelného světla) s jejich jednotkami koherentní soustavu, jejíž použití v astronomii je však poněkud omezené ze dvou důvodů: Z hlediska optiky je vzdálenost hvězd nedefinovaná a vyjma některých objektů jsou světelné zdroje na obloze bodové. To vedlo k zavedení veličin mimo soustavu SI a vedlejších jednotek. Navíc není vždy dodržena terminologie v SI.

Optické veličiny úzce souvisí s geometrií, proto je třeba zmínit doplňkovou veličinu prostorový úhel se značkou W. Prostorový úhel je část prostoru vymezená pláštěm nekonečného kužele(nebo jehlanu). Jeho jednotkou je steradián (sr). Steradián je prostorový úhel, který s vrcholem ve středu koule vytíná na povrchu této koule plochu s obsahem rovným druhé mocnině poloměru koule.

Pro výpočet velikosti prostorového úhlu plyne z definice:

W = S.r -2

Pokud je však myšlen prostorový úhel, jehož vrcholem je detektor záření, nikoliv zdroj záření, pak se v astronomii této jednotky nepoužívá. Místo ní se používá čtvereční stupeň:

1 □o = (p/180)2 sr,

tedy přibližně 1 □o = 0,0003046 steradiánu.

Plošný obsah hemisféry je zaokrouhleně 20 626 □o

Důležitým je vztah mezi úhlovým průměrem vrchlíku na sféře a prostorovým úhlem, který mu přísluší (či jeho obsahem). Jestliže je úhlový průměr vrchlíku j, pak prostorový úhel jemu příslušný je

W = 2p [1- cos(j/2)] sr.

Pro malé úhly vztah přechází na tvar W = p.j2/4 (rozvineme-li funkci kosinus na první dva členy Taylorova rozvoje).


Radiometrické veličiny

Zářivý tok

Každé těleso je zdrojem elektromagnetického vlnění, tedy vyzařuje energii, která se nazývá zářivou energií (Ue). Podíl zářivé energie a doby, za kterou byla vyzářena je vyzařovaný výkon, který se nazývá zářivý tok (Pe). Jeho jednotkou je 1 W.

Nějakou plochou prochází zářivý tok 1 W, jestliže při ustálených poměrech projde touto plochou zářivá energie 1 joule za 1 sekundu.

Pe = dUe/dt

Celkový výkon vyzařovaný do prostoru ze zdroje se nazývá celkový zářivý tok. V astronomii, pokud je myšlen celkový zářivý tok vyzařovaný hvězdou, se však tato veličina obvykle nazývá zářivý výkon nebo svítivost (L), případně bolometrická svítivost, což nesouvisí s pojmem svítivost v SI. Takto užívá pojmu např.Vanýsek. Šolc aj. pro bolometrickou svítivost užívají pojmu zářivý výkon, případně zářivost (což neodpovídá zářivosti v SI), zatímco svítivostí rozumí výkon vyzařovaný ve viditelné části spektra. Pro tu však SI zavádí pojem celkový světelný tok (viz níže). Pro zářivý tok používá Vanýsek značku "E", přičemž se vyhýbá názvu zářivý tok.

Nepříjemnost spočívající v rozdílu terminologie a značení je evidentní.

Zářivost

Ve SI zářivost (Ie) nějakého zdroje v určitém směru je podíl elementu zářivého toku dP vyzařovaného do nepatrného prostorového úhlu dW a tohoto prostorového úhlu.

Ie = dPe/dW

Jednotkou je 1W.sr-1. V případě izotropního zdroje (tj. zdroje, vyzařujícího stejně do všech směrů) je také Ie = P/W., tudíž celkový zářivý tok je pro izotropní zdroj Pc = 4pIe.

Lambertův zákon: V případě rovinné plošky, jejíž zářivost ve směru kolmém na její povrch je Ie0, je zářivost ve směru odkloněném od normály o úhel a

Ie = Ie0cosa

V důsledku toho zářivý tok do poloprostoru (W = 2p) je pouze

Pep = pIeo

Zářič s touto vlastností se nazývá "kosinový".

Intenzita vyzařování

Intenzita vyzařování (He) charakterizuje plošné zdroje záření. V daném místě zdroje je podílem elementu zářivého toku dPe vystupujícího do poloprostoru z elementu plochy dS a tohoto elementu plochy

He = dPe/dS

Jednotkou je 1 W.m-2.

Pro absolutně černé těleso lze vyslovit Stefanův - Boltzmannův zákon:

He = s.T4,

kde s = 2p5k4/(15h3c2) = (5,67051 ± 0,00019).10-8 W.m-2.K-4 je Stefanova-Boltzmannova konstanta,
T je termodynamická teplota tělesa,
h = (6,6260755 ± 0,0000040).10-34 J.s je Planckova konstanta,
k = (1,380658 ± 0,000012).10-23 J.K-1 je Boltzmannova konstanta a
c = 299 792 458 m.s-1 je rychlost světla ve vakuu.

Celkový zářivý tok (či zářivý výkon v astronomické terminologii) absolutně černé koule o poloměru R a termodynamické teplotě T je tedy

Pec= 4pR2s.T4 = 4pR2He

Reference:
[1] Klimeš B., Kracík J., Ženíšek A., Základy fyziky II (Academia, Praha 1972)
[2] Šindelář V., Smrž L., Nová soustava jednotek (SPN Praha, 1989)
[3] Šolc M., Švestka J. , Vanýsek V., Fyzika hvězd a vesmíru (SPN, Praha 1983)
[4] Vanýsek V., Základy astronomie a astrofyziky( Academia, Praha 1980)




Seriál

  1. Radiometrické a fotometrické veličiny v astronomii - Díl první
  2. Radiometrické a fotometrické veličiny v astronomii - Díl druhý
  3. Radiometrické a fotometrické veličiny v astronomii - Díl třetí


O autorovi

Miroslav Šulc

Miroslav Šulc

Narozen 1941, v roce 1963 promoval na přírodovědecké fakultě Univerzity J. E. Purkyně (dříve a nyní Masarykova univerzita) v oboru matematika-fyzika (s titulem promovaný fyzik-učitel). Od té doby zaměstnán jako učitel na střední škole. Od r. 1954 do r. 1986 externí spolupracovník brněnské hvězdárny. Od r. 1959 člen České astronomické společnosti. Od r. 1996 hospodář výboru SMPH. Od r. 2006 v definitivním důchodu.



36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »