Úvodní strana  >  Články  >  Sluneční soustava  >  Mezihvězdná kometa 2I/Borisov má neobvyklé složení

Mezihvězdná kometa 2I/Borisov má neobvyklé složení

Fotografii komety 2I/Borisov pořídil 9. 12. 2019 Hubbleův teleskop
Autor: NASA/ESA/Hubble/K. Meech, University of Hawaii/D. Jewitt, University of California, Los Angeles

Komety tráví většinu svého života ve velkých vzdálenostech od mateřských hvězd; během tohoto času zůstává složení jejich nitra relativně nezměněno. Pozorování komet mohou poskytnout přímý pohled na chemické složení, které získaly v průběhu svého zrodu v období formování planet. Na základě pozorování pomocí radioteleskopu ALMA (Atacama Large Millimeter/submillimeter Array) a Hubbleova vesmírného teleskopu HST dva týmy astronomů zjistily, že plyny unikající z komety 2I/Borisov, první pozoruhodně aktivní mezihvězdné komety objevené ve Sluneční soustavě, obsahuje nezvykle vysoké množství oxidu uhelnatého.

To naznačuje, že kometa 2I/Borisov se mohla zformovat v okolí červeného trpaslíka, ačkoliv i jiné druhy hvězd přicházejí v úvahu; jinou možností je, že mezihvězdná kometa může být ve skutečnosti úlomek trpasličí exoplanety bohatý na oxid uhelnatý.

Kometu 2I/Borisov objevil 30. srpna 2019 Gennadij Borisov, astronom Krymské astrofyzikální observatoře v Nauchnij na Ukrajině. Později se ukázalo, že kometa obíhá po hyperbolické dráze, a tudíž má mezihvězdný původ, pravděpodobně ve směru od souhvězdí Kasiopeia.

Tato kometa je druhým mezihvězdným objektem objeveným ve Sluneční soustavě a ukázalo se, že kometě podobná aktivita od doby, co byla objevena, ukazuje na sublimaci ledů. Její jasnost a poloha na obloze umožnila její pozorování po dobu několika měsíců.

Tato situace je velmi odlišná od prvně objeveného mezihvězdného objektu s označením 1I/‘Oumuamua, který byl mnohem slabší a pro většinu observatoří byl pozorovatelný pouze po dobu několika týdnů. Navíc se ukázalo, že u něj nebyly detekovatelné žádné uvolněné plyny a prach.

Odplynování jádra 2I/Borisov dělá z komety těleso vhodné pro studium chemického složení těkavých látek původně uložených v kometárním jádru. „S mezihvězdnou kometou prolétající naší Sluneční soustavou jsme obdrželi vzorek hmoty obíhající kolem jiné hvězdy než Slunce,“ říká John Noonan, vědecký pracovník Lunar and Planetary Laboratory na University of Arizona.

John Noonan se svými spolupracovníky použil Hubbleův teleskop k pozorování komety 2I/Borisov v období od 11. prosince 2019 do 3. ledna 2020. Nezávisle na tom vědecký tým, který vedl Martin Cordiner z NASA’s Goddard Space Flight Center studoval kometu ve dnech 15. a 16. prosince 2019 pomocí radioteleskopu ALMA. Výsledky pozorování ukázaly, že koncentrace oxidu uhelnatého u komety 2I/Borisov je 9× až 26× vyšší, než je jeho průměrné zastoupení u komet Sluneční soustavy.

Velké zásoby oxidu uhelnatého u komety 2I/Borisov naznačují, že pochází z regionu formování planet, který měl velmi odlišné chemické vlastnosti než protoplanetární disk, z kterého se zformovala tělesa Sluneční soustavy,“ říká Dennis Bodewits, astrofyzik na Auburn University, který vedl výzkumný tým pozorovatelů komety pomocí HST.

Led oxidu uhelnatého je velmi těkavý. Nepotřebuje mnoho slunečního záření k zahřátí a k jeho přeměně na plyn, který pak uniká z kometárního jádra. Tato aktivita oxidu uhelnatého se vyskytuje i velmi daleko od Slunce, zhruba 17,7 miliardy kilometrů, což je více než dvojnásobek vzdálenosti Pluta. Naproti tomu voda zůstává v podobě ledu až dokud kometa nedosáhne vzdálenosti asi 320 miliónů kilometrů od Slunce, což je přibližně vzdálenost vnitřního okraje pásu asteroidů.

Nicméně měření komety 2I/Borisov pomocí HST ukazují, že nějaký led oxidu uhelnatého byl uzavřen uvnitř kometárního jádra, odhalený teprve když sluneční teplo odstranilo vrstvy vodního ledu.

Množství oxidu uhelnatého neklesalo podle očekávání tak, jak se kometa vzdalovala od Slunce. To znamená, že jsme viděli původní vrstvy komety, které skutečně odrážely, z čeho je toto těleso složeno,“ říká Dennis Bodewits.

Vysoký poměr oxidu uhelnatého vůči vodě naznačuje, že kometa 2I/Borisov k nám přilétla z velmi studené oblasti – studené jako oblast ve Sluneční soustavě nazvaná Kuiperův pás, kde je trpasličí planeta Pluto a další podobná tělesa.

Tým vědců předpokládá, že kometa 2I/Borisov může mít původ u některé z nejpočetnějšího typu hvězd v Mléčné dráze: u červeného trpaslíka. „Takové hvězdy mají právě tak nízké teploty a svítivosti, že u nich mohou vznikat komety s takovým chemickým složením, jaké bylo objeveno u objektu 2I/Borisov,“ říká John Noonan.

Podle astronomů provádějících pozorování pomocí radioteleskopu ALMA může být kometa 2I/Borisov fragmentem trpasličí exoplanety, která obsahovala velké množství oxidu uhelnatého v podpovrchové oblasti, bez ohledu na typ hvězdy, odkud pochází. Jestliže dojde ke kolizi objektu s jiným tělesem, fragment bohatý na oxid uhelnatý může být nasměrován na cestu do kosmického prostoru.

Avšak 2I/Borisov se mohla zkrátka zformovat jako kometa s vysokým obsahem oxidu uhelnatého. Eventuálně mohla mít nezvykle silnou vnější vrstvu, která izolovala zmrzlé plyny jako kyanovodík a vodní páru. Jak se více těkavý oxid uhelnatý odpařoval či odplynoval, mohl se zdát mnohem hojnější než ostatní kometární plyny.

Neobvyklé vlastnosti komety 2I/Borisov mohou také naznačovat širší rozmanitost oxidu uhelnatého v kometách ve Sluneční soustavě, než  jsme si doposud mysleli.

Výsledky výzkumu byly publikovány ve dvou článcích v časopise Nature Astronomy.

Další data poskytla ultrafialová družice NASA s názvem Neil Gehrels Swift Observatory. Sledovala uvolňování vody z jádra komety 2I/Borisov. V maximu aktivity kometa uvolňovala 30 litrů vody za sekundu. Předpokládá se, že během průletu Sluneční soustavou kometa uvolní do okolního prostoru celkem zhruba 230 miliónů litrů vody.

Zdroje a doporučené odkazy:
[1] sci-news.com
[2] phys.org

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Radioteleskop ALMA, HST, Mezihvězdná kometa 2I/Borisov


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »