Úvodní strana  >  Články  >  Sluneční soustava  >  Odhaleno doposud neznámé cestování planety Jupiter

Odhaleno doposud neznámé cestování planety Jupiter

Planeta Jupiter na snímku z 12. 2. 2019 pořízeném sondou Juno
Autor: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

Obří plynná planeta Jupiter se zformovala čtyřikrát dále od Slunce, než leží její současná oběžná dráha a migrovala do vnitřních oblastí Sluneční soustavy v rozmezí 700 000 roků. Astronomové objevili důkaz této neuvěřitelné cesty díky skupině asteroidů v blízkosti planety Jupiter. Je známo, že plynní obři obíhající kolem jiných hvězd se velmi často nacházejí velmi blízko svých mateřských sluncí. V souladu s přijímanými teoriemi se tyto plynné planety vytvořily ve větších vzdálenostech a následně migrovaly na dráhy v blízkosti hvězd.

Nyní astronomové z Lund University a dalších institucí použili zdokonalené počítačové simulace ke zjištění více informací o cestě Jupitera napříč naším planetárním systémem v době přibližně před 4,5 miliardy roků. V té době se Jupiter teprve čerstvě zformoval a byl jednou z planet Sluneční soustavy. Planety se postupně vytvářely z kosmického prachu, který kroužil kolem mladého Slunce v okolním disku tvořeném plynem a prachovými částicemi. Jupiter tehdy nebyl větší než naše Země. Výsledky ukázaly, že se planeta Jupiter zformovala ve vzdálenosti čtyřikrát větší, než činí její současná poloha vzhledem ke Slunci.

Toto je vůbec poprvé, kdy jsme získali důkazy, že se Jupiter zformoval velmi daleko od Slunce a následně migroval na svoji současnou dráhu. Našli jsme důkazy migrace ve skupině asteroidů označovaných jako Trojané, které obíhají blízko Jupitera,“ vysvětluje Simona Pirani, postgraduální studentka astronomie na Lund University a hlavní autorka studie.

Dvě skupiny Trojanů na dráze Jupitera před a za planetou ve směru oběhu Autor: NASA/JPL-Caltech
Dvě skupiny Trojanů na dráze Jupitera před a za planetou ve směru oběhu
Autor: NASA/JPL-Caltech
Tyto asteroidy představují dvě skupiny, z nichž každá obsahuje několik tisíc známých těles, která se zdržují ve stejné vzdálenosti od Slunce i Jupitera, avšak jedna skupina obíhá 60° před planetou Jupiter, druhá naopak krouží 60° trvale za ní. Přední skupina ve směru oběhu Jupitera obsahuje asi o 50 % více těles než následná skupina. Jedná se o asymetrii, která se stala klíčem k pochopení migrace obří planety Jupiter.

Asymetrie vždycky byla záhadou ve Sluneční soustavě,“ říká Anders Johansen, profesor astronomie na Lund University.

Ve skutečnosti vědecká komunita doposud nebyla schopná vysvětlit, proč dvě skupiny planetek neobsahují stejný počet těles. Avšak Simona Pirani a Anders Johansen společně s dalšími kolegy nyní identifikovali příčinu jejich přerozdělení při vzniku planety Jupiter, a také to, jak planeta postupně ovlivňovala planetky typu Trojanů.

Díky obsáhlým počítačovým simulacím astronomové vypočítali, že současná asymetrie by se mohla vyskytnout pouze tehdy, jestliže by se Jupiter zformoval čtyřikrát dále od Slunce, než je dnes, a postupně migroval na svoji současnou pozici. V průběhu této cesty směrem ke Slunci gravitace Jupitera mezitím přitáhla více Trojanů do přední polohy než do polohy za planetou.

Podle výpočtů pokračovala migrace planety Jupiter přibližně 700 000 roků, v období zhruba 2 až 3 milióny roků po tom, co toto nebeské těleso zahájilo svoji existenci daleko od Slunce. Následná cesta směrem do nitra Sluneční soustavy měla charakter spirály, na které Jupiter pokračoval v oběhu kolem Slunce, i když stále více po těsnějších trajektoriích. Příčina zpomalující se tehdejší migrace souvisí s gravitačním působením okolních plynů planetární soustavy.

Počítačové simulace ukázaly, že planetky označované jako Trojané byly zachyceny, když byl Jupiter mladou planetou bez plynné atmosféry, což znamená, že tyto asteroidy s největší pravděpodobností představují stavební bloky podobné těm, z kterých se vytvořilo jádro planety Jupiter. V roce 2021 bude vypuštěna sonda NASA s názvem Lucy na dráhu, která ji postupně přivede do blízkosti šesti planetek ze skupiny Trojanů, které podrobně prozkoumá.

Ze studia Trojanů se můžeme dozvědět mnoho o jádru planety Jupiter a jeho vzniku,“ říká Anders Johansen.

Autoři studie se rovněž domnívají, že obří plynná planeta Saturn a ledoví obři Uran a Neptun mohli v minulosti rovněž podobně migrovat.

Zdroje a doporučené odkazy:
[1] sciencedaily.com
[2] sciencealert.com

Převzato: Hvězdárna Valašské Meziříčí



Štítky: Vznik Jupitera, Trojané, Planeta Jupiter


50. vesmírný týden 2024

50. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 9. 12. do 15. 12. 2024. Měsíc je nyní na večerní obloze ve fázi kolem první čtvrti a dorůstá k úplňku. Nejvýraznější planetou je na večerní obloze Venuše a během noci Jupiter. Ideální viditelnost má večer Saturn a ráno Mars. Aktivita Slunce je nízká. Nastává maximum meteorického roje Geminid. Uplynulý týden byl mimořádně úspěšný z pohledu evropské kosmonautiky, ať už vypuštěním mise Proba-3 nebo úspěšného startu rakety Vega-C s družicí Sentinel-1C. A před čtvrtstoletím byl vypuštěn úspěšný rentgenový teleskop ESA XMM-Newton.

Další informace »

Česká astrofotografie měsíce

Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách

Titul Česká astrofotografie měsíce za říjen 2024 obdržel snímek „Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách“, jehož autorem je Daniel Kurtin.     Komety jsou fascinující objekty, které obíhají kolem Slunce a přinášejí s sebou kosmické stopy ze vzdálených

Další informace »

Poslední čtenářská fotografie

NGC1909 Hlava čarodejnice

Veríte v čarodejnice? Lebo ja som Vám hlavu jednej takej vesmírnej čarodejnice aj vyfotil. NGC 1909, alebo aj inak označená IC 2118 (vďaka svojmu tvaru známa aj ako hmlovina Hlava čarodejnice) je mimoriadne slabá reflexná hmlovina, o ktorej sa predpokladá, že je to starobylý pozostatok supernovy alebo plynný oblak osvetľovaný neďalekým superobrom Rigel v Orióne. Nachádza sa v súhvezdí Eridanus, približne 900 svetelných rokov od Zeme. Na modrej farbe Hlavy čarodejnice sa podieľa povaha prachových častíc, ktoré odrážajú modré svetlo lepšie ako červené. Rádiové pozorovania ukazujú značnú emisiu oxidu uhoľnatého v celej časti IC 2118, čo je indikátorom prítomnosti molekulárnych mrakov a tvorby hviezd v hmlovine. V skutočnosti sa hlboko v hmlovine našli kandidáti na hviezdy predhlavnej postupnosti a niektoré klasické hviezdy T-Tauri. Molekulárne oblaky v IC 2118 pravdepodobne ležia vedľa vonkajších hraníc obrovskej bubliny Orion-Eridanus, obrovského superobalu molekulárneho vodíka, ktorý vyfukovali vysokohmotné hviezdy asociácie Orion OB1. Keď sa superobal rozširuje do medzihviezdneho prostredia, vznikajú priaznivé podmienky pre vznik hviezd. IC 2118 sa nachádza v jednej z takýchto oblastí. Vetrom unášaný vzhľad a kometárny tvar jasnej reflexnej hmloviny silne naznačujú silnú asociáciu s vysokohmotnými žiariacimi hviezdami Orion OB1. Prepracovaná verzia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 150/600 (150/450 F3), Starizona Nexus 0.75x komakorektor, QHY 8L-C, SVbony UV/IR cut, Gemini EAF focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 209x240 sec. Lights gain15, offset113 pri -10°C, master bias, 90 flats, master darks, master darkflats 4.11. až 7.11.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »