Úvodní strana  >  Články  >  Sluneční soustava  >  První snímky sondy Solar Orbiter odhalily „táborové ohně“ na Slunci

První snímky sondy Solar Orbiter odhalily „táborové ohně“ na Slunci

"Táborové ohně" na Slunci
Autor: ESA

První snímky pořízené sondou Solar Orbiter, společnou misí ESA a NASA, odhalily poblíž povrchu naší hvězdy všudypřítomné miniaturní erupce, jimž vědci podílející se na misi začali říkat „táborové ohně“.

Tiskové prohlášení Evropské kosmické agentury z 16. července 2020

Pozorování jevů, jež dosud nebylo možné sledovat takto podrobně, podle vědců svědčí o obrovském potenciálu sondy Solar Orbiter, která teprve završila ranou fázi technického ověřování známou jako validace.

„Je to zatím jen první várka – a už vidíme zajímavé nové jevy,“ říká Daniel Müller, vedoucí vědeckého týmu ESA Solar Orbiter. „Nečekali jsme, že tak skvělé výsledky začnou chodit od samotného začátku. Sledujeme také, jak se celá desítka našich vědeckých přístrojů vzájemně doplňuje a poskytuje ucelený obrázek Slunce a jeho okolí.“

Sonda Solar Orbiter byla vypuštěna 10. února 2020 a má na palubě šest přístrojů pro dálkový průzkum, které snímkují Slunce a jeho sousedství, a čtveřici přístrojů pro místní měření v okolí sondy. Srovnáním dat z obou sad přístrojů prohloubí vědci poznatky o vzniku slunečního větru, tj. proudu nabitých částic vycházejících ze Slunce, který ovlivňuje celou Sluneční soustavu.

Na misi Solar Orbiter je jedinečné to, že žádné jiné vesmírné plavidlo nedokázalo pořídit snímky Slunce z takové blízkosti.

Snímky Slunce z rekordní blízkosti odhalují nové jevy

Solar Orbiter poslal první snímky Slunce Autor: ESA
Solar Orbiter poslal první snímky Slunce
Autor: ESA
Táborové ohně patrné v první sadě fotografií odhalil přístroj EUI (Extreme Ultraviolet Imager), zachycující extrémní ultrafialové záření, v prvním přísluní sondy, tj. v bodě, který je na její eliptické oběžné dráze nejblíže ke Slunci. Solar Orbiter byl v tom okamžiku vzdálen od Slunce pouhých 77 milionů kilometrů, což je zhruba polovina vzdálenosti mezi naší planetou a její hvězdou.

„Tyto táborové ohně jsou malými příbuznými slunečních erupcí, které můžeme pozorovat ze Země. Jsou milionkrát či miliardkrát menší,“ říká David Berghmans z Belgické královské observatoře v Belgii, hlavní výzkumník dílčího projektu EUI, který ve vysokém rozlišení pořizuje snímky nižších vrstev sluneční koróny. „Na první pohled se Slunce může jevit klidně, ale když si je vezmeme pod drobnohled, vidíme jednu miniaturní erupci vedle druhé.“

Vědci zatím nemají jasno v tom, zda jsou táborové ohně jen zmenšenými verzemi velkých erupcí, nebo zda je pohání jiný fyzikální mechanismus. Už se ale objevily teorie, že tyto miniaturní erupce by mohly přispívat k jednomu z nejzáhadnějších fenoménů na Slunci, totiž k zahřívání koróny.

Odhalování slunečních tajemství

„Každý z těchto táborových ohňů je sám o sobě naprosto nepodstatný, ale když sečteme efekt všech těchto vzplanutí na celém povrchu Slunce, mohou být hlavním faktorem, který přispívá k zahřívání sluneční koróny,“ uvádí Frédéric Auchère z francouzského Institutu vesmírné astrofyziky (IAS), jeden z hlavních výzkumníků projektu EUI.

Solární koróna je vnější vrstva sluneční atmosféry, která sahá miliony kilometrů do vesmíru. Její teplota překračuje milion stupňů Celsia, což je o několik řádů více než teplota povrchu Slunce, která činí „pouhých“ 5 500 °C. Mechanismus zahřívání koróny není uspokojivě objasněn ani po několika desítkách let vědeckého bádání a jeho popis je považován za svatý grál solární fyziky.

„Na závěry je samozřejmě ještě brzy, ale doufáme, že když tato pozorování spojíme s měřeními z dalších přístrojů, které ‚osahávají‘ sluneční vítr prohánějící se kolem sondy, budeme schopni rozlousknout některé záhady,“ říká Yannis Zouganelis, zástupce vedoucího projektu Solar Orbiter v ESA.

Pohled na odvrácenou stranu Slunce

Dalším sofistikovaným přístrojem na palubě sondy je polarimetrická a helioseismická kamera (PHI). Ta má za úkol měřit čáry magnetického pole na povrchu Slunce ve vysokém rozlišení. Smyslem těchto měření je sledování aktivních oblastí Slunce, tedy oblastí s obzvlášť silnými magnetickými poli, z nichž se mohou zrodit erupce.

Magmetické pole na povrchu Slunce Autor: ESA
Magmetické pole na povrchu Slunce
Autor: ESA
Během erupcí uvolňuje Slunce proudy vysoce energetických částic, jež znásobují intenzitu slunečního větru, který ze Slunce neustále plyne do okolního vesmíru. Když tyto částice proniknou do magnetosféry naší planety, mohou vyvolávat magnetické bouře, jež dokážou narušit funkci pozemských telekomunikačních a rozvodných sítí.

„Slunce je ve své aktuální fázi jedenáctiletého cyklu velice klidné,“ uvádí Sami Solanki, ředitel Institutu Maxe Plancka pro výzkum Sluneční soustavy v německém Göttingenu a zároveň hlavní výzkumník projektu PHI. „Jelikož se však Solar Orbiter nachází vůči Slunci v jiném úhlu než Země, podařilo se nám zpozorovat jednu aktivní oblast, kterou ze Země nebylo možné spatřit. To je novinka. Nikdy předtím jsme nebyli schopni měřit magnetické pole na odvrácené straně Slunce.“

Magnetogramy, které ukazují měnící se sílu magnetických polí na povrchu Slunce, bylo následně možné porovnat s měřeními přístrojů, které zkoumají okolí sondy.

„Přístroj PHI měří magnetické pole na povrchu Slunce. Pomocí EUI zase vidíme struktury v solární koróně, ale snažíme se taktéž odvodit čáry magnetického pole, které zasahují do meziplanetárního média, v němž se Solar Orbiter nachází,“ vysvětluje José Carlos del Toro Iniest z Andaluského institutu astrofyziky ve Španělsku, jeden z hlavních výzkumníků projektu PHI.

Jak polapit sluneční vítr

Čtyři přístroje pro místní měření, které jsou instalovány na palubě sondy, odvodí charakteristiky čar magnetického pole i slunečního větru procházejícího sondou.

Christopher Owen z Mullardovy laboratoře pro výzkum vesmíru na University College v Londýně, který je hlavní výzkumníkem projektu analyzátoru slunečního větru (SWA), jednoho z přístrojů pro místní měření, vysvětluje: „Pomocí těchto informací můžeme odhadnout, kde na Slunci daný proud slunečního větru vznikl, a následně můžeme použít veškeré instrumentárium mise k popsání fyzických procesů, které probíhají v různých slunečních regionech a vedou ke vzniku slunečního větru.“

„Všichni jsme těmito prvotními snímky nadšeni – a to je teprve začátek,“ dodává Daniel. „Solar Orbiter zahájil velké turné po vnitřní části Sluneční soustavy a během méně než dvou let se ke Slunci dostane ještě o mnoho blíže. Přiblíží se k němu až na 42 milionů kilometrů. To je skoro čtvrtina vzdálenosti Země od Slunce.“

„První data již naznačují, jaký potenciál má úspěšná spolupráce kosmických agentur a jak užitečná může být rozmanitá sada snímků při zodpovídání otázek o Slunci,“ říká Holly Gilbertová, ředitelka Odboru heliofyziky v Goddardově kosmickém středisku NASA, která zodpovídá za projekt Solar Orbiter v NASA.

Solar Orbiter je společná mise ESA a NASA. Na přípravě vědeckého instrumentária či kosmické lodi se podílelo dvanáct členských zemí ESA (Belgie, Česká republika, Dánsko, Finsko, Francie, Irsko, Itálie, Lucembursko, Německo, Nizozemsko, Norsko, Polsko, Portugalsko, Rakousko, Řecko, Spojené království, Španělsko, Švédsko a Švýcarsko) a NASA. Hlavním dodavatelem sondy byla britská společnost Airbus Defence and Space.

Zdroje a doporučené odkazy:
[1] Snímky sondy Solar Orbiter
[2] Videa sondy Solar Orbiter



O autorovi

Redakce Astro.cz

Redakce Astro.cz

Redakce Astro.cz je tu od roku 1995, kdy stránky založil Josef Chlachula. Nejaktivnějším přispěvovatelem je od roku 2003 František Martinek. Šéfredaktorem byl v letech 2007 - 2009 Petr Kubala, v letech 2010 - 2017 Petr Horálek, od roku 2017 je jím Petr Sobotka. Zástupcem šéfredaktora je astrofotograf Martin Gembec. Facebookovému profilu ČAS se z redakce věnuje především Martin Mašek a o Instagram se starají především Jan Herzig, Adam Denko a Zdeněk Jánský. Nejde o výdělečný portál. O to více si proto vážíme Vaší spolupráce! Kontakty na členy redakce najdete na samostatné stránce.

Štítky: Erupce, Solar Orbiter, Slunce


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »