Úvodní strana  >  Články  >  Sluneční soustava  >  Sluneční záření v obdobích minima je neuvěřitelně konstantní

Sluneční záření v obdobích minima je neuvěřitelně konstantní

Slunce 27. 9. 2008
Autor: SOHO/ESA/NASA

Na základě více než půl století dlouhé řady pozorování japonští astronomové zjistili, že intenzita mikrovlnného záření přicházejícího ze Slunce v obdobích minima sluneční činnosti za uplynulých pět slunečních cyklů byla pokaždé shodná, i přes velké rozdíly v období maxima jednotlivých cyklů.

V Japonsku pokračovalo průběžné měření slunečního mikrovlnného záření na čtyřech frekvencích (1,0; 2,0; 3,75 a 9,4 GHz), které započalo v roce 1957 na Toyokawa Branch of the Research Institute of Atmospherics, Nagoya University. V roce 1994 byly radioteleskopy přemístěny do NAOJ Nobeyama Campus, kde pozorování pokračují i v současnosti.

Skupina astronomů, jejímž vedoucím byl Masumi Shimojo, odborný asistent na NAOJ Chile Observatory, a další členové z Nagoya University, Kyoto University a Ibaraki University, analyzovala více než šedesátiletou řadu pozorování mikrovlnného záření Slunce těmito radioteleskopy. Zjistili přitom, že intenzita mikrovlnného záření a spektra mikrovlnného záření v obdobích minim sluneční činnosti za uplynulých pět cyklů byla pokaždé stejná. Naproti tomu během period maxima sluneční činnosti se jak intenzita mikrovlnného záření, tak i spektra v jednotlivých maximech měnila.

Pozorování slunečního mikrovlnného záření pomocí radioteleskopů v roce 1957 (vlevo nahoře) a dnes (vlevo dole). Pozorování fluktuací slunečního mikrovlnného záření v průběhu 60 let (vpravo nahoře) a sluneční mikrovlnné spektrum v každém slunečním minimu (vpravo dole). V pozadí je sluneční disk vyfotografovaný rentgenovým dalekohledem na palubě japonské kosmické observatoře Hinode. Autor: NAOJ/Nagoya University/JAXA
Pozorování slunečního mikrovlnného záření pomocí radioteleskopů v roce 1957 (vlevo nahoře) a dnes (vlevo dole). Pozorování fluktuací slunečního mikrovlnného záření v průběhu 60 let (vpravo nahoře) a sluneční mikrovlnné spektrum v každém slunečním minimu (vpravo dole). V pozadí je sluneční disk vyfotografovaný rentgenovým dalekohledem na palubě japonské kosmické observatoře Hinode.
Autor: NAOJ/Nagoya University/JAXA
Masumi Shimojo k tomu říká: „Jiná systematická dlouhodobá pozorování než pozorování slunečních skvrn jsou v astronomii výjimečná. Je to velmi důležité vzhledem k tomu, abychom zjistili trend daného jevu překračující jednotlivé sluneční cykly. Je to významný krok k porozumění vzniku a zesilování magnetických polí Slunce, která generují sluneční skvrny a další aktivitu Slunce.“

Slunce prochází jednotlivými cykly zvýšené aktivity a klidné periody přibližně každých 11 let. Tento „sluneční cyklus“ je především spojován s počtem slunečních skvrn, avšak existují i jiné typy sluneční činnosti. Tudíž určování počtu slunečních skvrn není dostačující k pochopení komplexních podmínek probíhající sluneční aktivity.

Mikrovlny jsou dalším indikátorem sluneční činnosti. Na rozdíl od slunečních skvrn mohou být pozorovány i při zamračené obloze. Navíc sledování mikrovln na více frekvencích poskytuje možnost výpočtu vzájemné intenzity na jednotlivých frekvencích (což označujeme jako spektrum).

 
 

Zdroje a doporučené odkazy:
[1] phys.org
[2] nro.nao.ac.jp

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Slunce, Sluneční činnost, Mikrovlnné záření


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »