Úvodní strana  >  Články  >  Sluneční soustava  >  Sonda MESSENGER měřila rozpínání Sluneční soustavy

Sonda MESSENGER měřila rozpínání Sluneční soustavy

Určování polohy Merkuru na základě rádiového signálu ze sondy MESSENGER
Autor: NASA’s Goddard Space Flight Center

Vědci z NASA a MIT (Massachusetts Institute of Technology) analyzovali nepatrné změny v pohybu planety Merkur za účelem zjištění, jak dynamika Slunce ovlivňuje dráhy planet. Poloha Merkuru v průběhu plynoucího času byla určována na základě sledování změn rádiového signálu sondy MESSENGER (start 3. 8. 2004) během doby, kdy byla ještě aktivní. Dráhy planet ve Sluneční soustavě se postupně vzdalují od Slunce. Dochází k tomu proto, že gravitační působení naší hvězdy slábne, jak stálice postupně stárne a ztrácí hmotu. Nyní skupina vědců z NASA a MIT nepřímo měřila tuto ztrátu hmoty a další sluneční parametry na základě pozorování změn dráhy Merkuru.

Nové hodnoty zlepšily pozice dřívějších předpovědí zmenšením míry jejich neurčitosti. To je zejména důležité pro určení ztráty hmotnosti Slunce s časem, protože to souvisí se stabilitou gravitační konstanty G. Přestože je gravitační konstanta považována za neměnné číslo, bylo nutné zjistit, zda je stále ještě opravdu konstantní základní veličinou ve fyzice.

Planeta Merkur je dokonalé zkušební těleso pro takovéto experimenty, protože je velmi citlivá na gravitační vlivy a aktivitu Slunce,“ říká Antonio Genova, hlavní autor studie publikované v Nature Communications, vědecký pracovník Massachusetts Institute of Technology a NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Kosmická sonda MESSENGER nad povrchem planety Merkur Autor: NASA/JHUAPL/Carnegie Institution
Kosmická sonda MESSENGER nad povrchem planety Merkur
Autor: NASA/JHUAPL/Carnegie Institution
Výzkum započal zpřesněním efemerid Merkuru – jakési cestovní mapy poloh planety na naší obloze v průběhu času. Proto se vědecký tým připravil na rádiové sledování dat, která monitorovala polohu sondy NASA s názvem MESSENGER v době, kdy byla ještě aktivní. Krátce předtím sonda v letech 2008 a 2009 třikrát prolétla kolem Merkuru, než byla v březnu 2011 navedena na oběžnou dráhu kolem planety, po níž obíhala do dubna 2015. Vědci postupně analyzovali nepatrné změny v pohybu planety a zjišťovali, jak Slunce a jeho fyzikální parametry ovlivňují dráhu Merkuru.

V průběhu staletí vědci studovali pohyb Merkuru a věnovali důkladnou pozornost periheliu jeho dráhy, tj. nejbližšími místu vůči Slunci na jeho oběžné dráze. Pozorování již dávno odhalila, že perihelium se posouvá s časem – nastává tzv. precese (neboli stáčení perihelia). Ačkoliv gravitační vliv ostatních planet byl příčinou velké části precese, nepodařilo se ji zcela vysvětlit.

Druhý největší příspěvek je způsoben zakřivením prostoročasu v okolí Slunce v důsledku jeho vlastní gravitace, který byl vysvětlen na základě Einsteinovy obecné teorie relativity. Úspěchem teorie relativity bylo, že vysvětlila většinu zbývající precese dráhy Merkuru a pomohla přesvědčit vědce, že tato teorie je správná.

Další mnohem menší příspěvky ke stáčení perihelia Merkuru jsou přisuzovány vlastnostem nitra Slunce a jeho dynamice. Jedním z parametrů je zploštění Slunce, které ukazuje, o kolik je  rovníkový průměr větší než  polární – na rozdíl od dokonalé koule. Astronomové zpřesnili tento parametr, který je v souladu s dřívějšími výzkumy.

Vědci byli schopni odlišit některé sluneční parametry od relativistických efektů, které se nepodařilo rozlišit při dřívějších výzkumech, kdy se výzkumníci spoléhali na data podle efemerid. Vědecký tým vyvinul neobvyklou metodu, která souběžně určovala a zvažovala jak dráhu sondy MESSENGER, tak i dráhu planety Merkur. To vedlo ke komplexnímu řešení zahrnujícímu jak parametry související s vývojem nitra Slunce, tak i relativistické efekty.

Nastolili jsme přetrvávající a velmi důležité otázky elementární fyziky a znalostí o Slunci využitím postupů planetárních věd,“ říká Erwan Mazarico, geofyzik na Goddard Space Flight Center. „S řešením těchto problémů z neobvyklého pohledu se můžeme dozvědět více o vzájemném působení mezi Sluncem a planetami.“

Nové určení týkající se rychlosti ztráty sluneční hmoty představuje jednu z prvních hodnot, která byla stanovena na základě pozorování, a ne na základě teoretických výpočtů. Právě díky teoretickým výpočtům vědci již dříve odvodili, že Slunce ztrácí jednu desetinu procenta sluneční hmotnosti za deset miliard roků. To je dostatečná hodnota ke zmenšení gravitační přitažlivosti Slunce, což způsobuje, že dráhy planet se vzdalují od Slunce přibližně o 1,5 centimetru za rok na jednu astronomickou jednotku (1 AU je průměrná vzdálenost Země od Slunce).

Nové odhady jsou nepatrně nižší, než se předpokládalo dříve, avšak i s menší nejistotou. Je zřejmé, že stálost gravitační konstanty G může být zvýšena desetinásobně v porovnání s hodnotami odvozenými z oběhu Měsíce kolem Země.

Studie ukazuje, jak uskutečněná měření změn oběžných drah planet v celé Sluneční soustavě otevírají možnost budoucích objevů týkajících se charakteristik Slunce a planet, a ve všeobecnosti o znalostech fungování vesmíru,“ říká spoluautorka studie Maria Zuber, místopředsedkyně pro vědecký výzkum na Massachusetts Institute of Technology.

Zdroje a doporučené odkazy:
[1] scitechdaily.com
[2] nasa.gov
[3] nature.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Vzdalování planetárních drah, Parametry Slunce, Sonda MESSENGER


49. vesmírný týden 2025

49. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 12. do 7. 12. 2025. Měsíc bude v úplňku, projde Plejádami a setká se s Jupiterem. Od setmění je nad jihem Saturn. Nízko na ranní obloze je Merkur. Velmi vysoká bude nyní aktivita Slunce. Uvidíme polární záře? Komety večer ruší Měsíc a ráno to brzy nebude lepší. Na Bajkonuru došlo k poškození jediné rampy sloužící pro mise lodí Sojuz a Progress k ISS. ESA na následující roky posílila rozpočet. Před 500 lety se narodil český astronom Tadeáš Hájek z Hájku.

Další informace »

Česká astrofotografie měsíce

Kométa C/2025 A6 Lemmon a Lomnický štít

Titul Česká astrofotografie měsíce za říjen 2025 obdržel snímek „Kométa C/2025 A6 Lemmon a Lomnický štít“, jehož autorem je astrofotograf Robert BarsaCitron je žlutý kyselý plod citroníku z druhu citrusovitých. Používá se nejen v potravinářství … A právě jméno tohoto plodu si vybrali naši

Další informace »

Poslední čtenářská fotografie

Kométa 3I/ATLAS

3I/ATLAS – medzihviezdna kométa na návšteve Medzihviezdna kométa 3I/ATLAS patrí medzi veľmi vzácnu skupinu objektov, o ktorých vieme, že do našej Slnečnej sústavy prileteli z iného hviezdneho systému. Pohybuje sa po silno hyperbolickej dráhe, takže ju pri ďalšom obehu už znovu neuvidíme – len raz preletí okolo Slnka a opäť zmizne do medzihviezdneho priestoru. Na zábere z ranných hodín 28. 11. 2025 dominuje zelenkastá kóma kométy v spodnej časti obrazu. Jemný prachový chvost sa rozlieva šikmo nahor medzi hviezdami, ktoré ostávajú ostré a nehybné – pekná pripomienka toho, že sledujeme rýchleho hosťa na pozadí vzdialeného hviezdneho poľa našej Galaxie. Aj keď 3I/ATLAS na oblohe nepatrí k najjasnejším kométam, možnosť zachytiť medzihviezdnu návštevníčku je výnimočná. Každý takýto objekt prináša jedinečný pohľad na materiál a históriu iných planetárnych systémov – a táto fotografia je malou “pamiatkou” na jej krátku zastávku v našej kozmickej „štvrti“. Už z voľby kompozície je jasné že som čakal trocha výraznejší chvost ???? Technické údaje: Vybavenie: SkyWatcher NEQ6Pro, GSO Newton 200/800 (200/600 F3) + Starizona Nexus 0.75×, Touptek ATR585M mono, AFW-M + Touptek LRGB filtre, Gemini EAF, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, PixInsight, Adobe Photoshop. Expozície: L 20x60s, RGB 12×90 s, master bias, flats, darks, darkflats. Gain 150, Offset 300. 28.11.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »