Úvodní strana  >  Články  >  Sluneční soustava  >  Spousta skryté hmoty v blízkosti Slunce

Spousta skryté hmoty v blízkosti Slunce

Předpokládaný
Předpokládaný "disk" skryté hmoty v naší Galaxii
Astronomové z Universität Zürich, Eidgenössische Technische Hochschule Zürich, University of Leicester a NAOC Beijing objevili velké množství "neviditelné" skryté hmoty v blízkém okolí Slunce. Jejich závěry jsou v souladu s teoriemi, podle nichž je naše Galaxie obklopena masivním útvarem označovaným jako tzv. halo, tvořeným skrytou hmotou. Výsledky budou publikovány v časopise Monthly Notices of the Royal Astronomical Society.

Existenci skryté hmoty navrhoval švýcarský astronom Fritz Zwicky již ve 30. letech minulého století. Zjistil, že skupina galaxií musí být zaplněna záhadnou skrytou hmotou, která ji udržuje před rozpadem. Přibližně ve stejné době Jan Oort (Nizozemí) zjistil, že hustota hmoty v (galaktickém) okolí Slunce je téměř 2krát vyšší, než se dá vysvětlit přítomností hvězd a samotného plynu. V uplynulém desetiletí astronomové rozvinuli teorie skryté hmoty, které vysvětlují vlastnosti hvězdokup a galaxií ve vesmíru, avšak množství skryté hmoty v blízkém sousedství Slunce zůstávalo nadále nevysvětlenou záhadou.

V desetiletí následujícím po Oortově měření bylo zjištěno 3 až 6krát více skryté hmoty, než se předpokládalo. V posledních letech nová data a nové metody potvrdily zase podstatně méně skryté hmoty, než bylo předpovězeno. Vědecká veřejnost byla rozpačitá; všeobecně se předpokládalo, že pozorování a analýzy zkrátka nejsou dostatečně citlivé, aby bylo možné uskutečnit nová spolehlivá měření.

V této nejnovější publikované studii si jsou autoři jisti svými měřeními a jejich přesností. Je to proto, že vycházeli z nejmodernějších simulací naší Galaxie k prověření metody určování hmotnosti při použití reálných dat. Vyplynula z toho četná překvapení. Zjistili například, že standardní techniky použité v uplynulých 20 letech byly zkreslené, vždycky měly snahu podceňovat množství přítomné skryté hmoty. Když astronomové rozpracovali nové nestranné techniky, získali správné odpovědi z nasimulovaných dat. Využitím této techniky k určování poloh a rychlostí oranžových trpaslíků spektrální třídy K v blízkém okolí Slunce získali nová měření hustoty lokální skryté hmoty.

Vedoucí autorka článku Silvia Garbari říká: "Jsme si na 99 % jisti, že skrytá hmota v blízkém okolí Slunce existuje. Ve skutečnosti je hustota skryté hmoty nepatrně vyšší. Je zde asi 10% možnost, že se jedná pouze o statistické odchylky. Avšak s 90% jistotou jsme objevili více skryté hmoty, než se očekávalo. Pokud bude v budoucnu tato hodnota potvrzena, význam měření ještě vzroste. Bude to první důkaz pro existenci disku skryté hmoty v naší Galaxii, jak nedávno předpověděla teorie a počítačové simulace jejího vzniku. Nebo se může ukázat, že oblast skryté hmoty vytvářející halo naší Galaxie je zploštělá, čímž došlo k lokálnímu zvýšení hustoty skryté hmoty."

Mnozí fyzikové vsadili na to, že skrytá hmota je tvořena novými základními částicemi, které velmi slabě interagují s obyčejnou hmotou - avšak dostatečně silně na to, aby byly detekovány v experimentech hluboko pod zemským povrchem, kde nejsou ovlivňovány kosmickým zářením a kde jsou odstíněny horninou o tloušťce více než jeden kilometr.

Co je důležité při pečlivých měřeních hustoty lokální skryté hmoty při takovýchto experimentech, vysvětluje spoluautor objevu prof. George Lake: "Pokud by byla skrytá hmota tvořena základními částicemi, miliardy z nich by prošly vašimi těly v době, kdy dokončujete čtení těchto řádků. Experimentální fyzikové doufají, že každý rok zachytí alespoň několik těchto částic v probíhajících experimentech, jako je XENON a CDMS, které jsou v současné době v provozu. Znalost vlastností lokální skryté látky je klíčem k odhalení, z jakého druhu částic je složena."

Zdroj: spaceref.com
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Slunce, Skrytá látka


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »