Úvodní strana  >  Články  >  Vzdálený vesmír  >  Zapojte se s opavskými fyziky do hledání tajemné látky ve vesmíru. Postačí chytrý telefon!

Zapojte se s opavskými fyziky do hledání tajemné látky ve vesmíru. Postačí chytrý telefon!

Přes snímek z Hubbleova kosmického dalekohledu byl vložen modrý obraz naměřeného prstencového rozložení Skryté hmoty kolem středu kupy galaxií CL0024+17.
Autor: NASA, ESA, M.J. Jee a H. Ford (Johns Hopkins University).

Astrofyzikální proGResy z Opavy: Už od konce srpna roku 2016 probíhá mezinárodní projekt CREDO (Cosmic-Ray Extremely Distributed Observatory), na jehož realizaci se mimo jiných podílejí také vědci z Fyzikálního ústavu v Opavě. Projekt je zaměřený na detekci kosmického záření a hledání tajemné “skryté látky” (nebo též “temné hmoty”) ve vesmíru. Rozklíčování její záhady by mohlo být na dosah za pomoci co nejširší veřejnosti po celé planetě, protože k detekci prchavých částic, které skrytou látku provázejí, si vystačíte s aplikací na svém chytrém telefonu.

Tisková zpráva Fyzikálního ústavu Slezské univerzity v Opavě ze dne 16. března 2021

Ačkoliv astronomové věnují výzkumu vesmíru už celá staletí, více než 95 % složení vesmíru je nám neznámé. Předpokládá se, že 68 % tvoří skrytá energie a zbývajících 27 % neznámého složení představuje skrytá hmota. Je známo, že tyto komponenty ve vesmíru opravdu existují, a to kvůli řadě jinak nevysvětlitelných jevů, například z rozporuplného pozorování rotací galaxií. Na to upozorňovali už v roce 1932 nizozemský astronom Jan Oort (1900-1992) a v roce 1933 švýcarsko-americký astronom s českými kořeny, Fritz Zwicky (1898-1974). Na rozdíl od skryté energie není skrytá hmota rozložena v prostoru rovnoměrně. Díky své gravitaci tvoří shluky podobně jako viditelná hmota, která je k těmto shlukům také přitahována. Některé novější výzkumy ukazují, že by skrytá hmota mohla mít vliv na elektromagnetické záření přítomné ve vesmíru – na polarizaci mikrovlnného pozadí. Ale jinak nikdo nemá tušení, jakou mají tyto komponenty povahu či podobu. Existují pouze domněnky, které se bez lepší pozorovací technologie mohou jen těžko potvrdit či vyvrátit.

Odpovědi se ale skrývají v kosmickém záření. Každou sekundu je naše Země bombardována miliardami nabitých mikroskopických částic včetně těch z neznámé skryté hmoty. Některé z těchto částic mohou mít extrémně vysokou energii, která může i miliardkrát překročit energii vytvořenou na Zemi pomocí největšího urychlovače částic v ženevském CERNu. Tyto částice se nazývají kosmické záření a čím více energie tyto částice mají, tím vzácnější jsou. Kosmickou částici s nejvyšší energií je velice obtížné detegovat: Za celé století se může detegovat třeba pouze jedna jediná na ploše čtverečního kilometru. Aby se pravděpodobnost takové detekce zvýšila, je nutné postavit větší detektor. Je možné postavit nějaký o velikosti kontinentu, celé Země, anebo i ještě větší? Lidé z projektu CREDO právě takovéto ambiciózní myšlenky chtějí dosáhnout.

Mezinárodní projekt CREDO (Cosmic-Ray Extremely Distributed Observatory), zahájený vědci z Ústavu jaderné fyziky v Krakově a Fyzikálního ústavu v Opavě (celkem se do projektu zapojili vědci z 19 zemí na 5 kontinentech) by této tajemné látce mohl konečně přijít na kloub. Zaměřuje se na jednu z mnoha teorií o tom, čím by tato skrytá hmota mohla být – na superhmotné částice zrozené v raném vesmíru. Pokud je tato teorie správná, samotné superhmotné částice nemůžeme vidět, ale měli bychom být schopni detekovat pozůstatky po jejich rozpadu. Tedy vzácné fotony s velmi specifickou energií, o nichž se předpokládá, že jsou výsledkem tohoto rozpadu. Stávající observatoře, které hledají částice z vesmíru, mají minimální šanci na úspěch tyto mimořádně prchavé částice detekovat, protože pokrývají nepatrný zlomek zemského povrchu. Potřebovali bychom detektor o velikosti Země, což zjevně není možné. Můžeme však s vaší pomocí udělat spoustu malých detektorů rozmístěných po povrchu Země.

Jak to funguje? Pokud máte chytrý telefon s fotoaparátem, již máte hardware, který je zapotřebí k detekci těchto částic. Stačí si tedy stáhnout aplikaci CREDO detektor a začít v běžném záření kolem nás identifikovat i ony specifické částice. Aplikace používá kameru vašeho chytrého telefonu (zatímco se telefon třeba nabíjí na stole a kamera je zakrytá) k hledání jasných pixelů způsobených dopadem vysoce energetické částice na CCD detektor ve fotoaparátu. Na servery CREDO se odešle malá „miniatura“ takové detekce spolu s časem a datem, kdy byl váš přístroj do projektu zapojen. Zpětně můžete sledovat, zda právě váš telefon nezachytil onu specifickou částici z vesmíru.

I když nevlastníte chytrý telefon, budete se moci do experimentu zapojit. Experiment CREDO by se totiž dal s jistou nadsázkou nazvat jakousi „celoplanetární občanskou vědeckou patrolou“. U velkého počtu chytrých telefonů detekujících dopady částic je důležité tyto obrazy filtrovat, aby se určil typ detekovaných částic a také se sledovaly případné neočekávané detekce. Hodně z této analýzy bude nakonec provedeno počítači, ale na tyto úkony bude třeba co nejvíce počítačů, aby se ušetřilo spoustu procesního času. Pro tyto účely je již ve vývoji program Private Particle Detective, který provádí další analýzy na detekcích zaznamenaných uživateli chytrých telefonů. Jak to celé funguje, můžete zhlédnout v krátkém naučném videu.

Vědci si slibují velké pokroky v řešení mnohých kosmologických otázkek a zároveň předesílají, že od dob podobně laděného projektu SETI@Home, který takovou cestou prostřednictvím dobrovolných uživatelů na celém světě vylepšoval distribuované výpočty a zároveň pomáhal s hledáním mimozemských civilizací, je CREDO tím nejzajímavějším a nejpokrokovějším projektem zapojujícím celoplanetární veřejnost do vědeckého bádání. I kdyby se nakonec nepodařilo detekovat onen kýžený prchavý “foton” z původní superhmotné částice, nebude projekt běžet nadarmo. Veškeré jiné nezvyklé částice zachycené z vesmíru na fotoaparát mobilního telefonu totiž mohou pomoci v hledáním odpovědí na ostatní kosmologické otázky, takže (nejen) pro příznivce CREDO bude výsledkem zkoumání vždy něco nového a cenného!

Cílem projektu CREDO je zapojení uživatelů chytrých telefonů do detekce specifických částic – fotonů vzniklých pří rozpadu superhmotných částic v raném vesmíru. Právě tyto detekce by mohly poskytnout odpovědi na otázky kolem tajemné skryté hmoty. Autor: CREDO/FÚ SLU
Cílem projektu CREDO je zapojení uživatelů chytrých telefonů do detekce specifických částic – fotonů vzniklých pří rozpadu superhmotných částic v raném vesmíru. Právě tyto detekce by mohly poskytnout odpovědi na otázky kolem tajemné skryté hmoty.
Autor: CREDO/FÚ SLU

Kontakty a další informace:

RNDr. Arman Tursunov, Ph.D.
Odborný asistent na Fyzikálním ústavu SU v Opavě
Email: arman.tursunov@physics.slu.cz
Telefon: +420 553 684 286

Bc. Petr Horálek
PR výstupů evropských projektů FÚ SU v Opavě
Email: petr.horalek@slu.cz
Telefon: +420 732 826 853

Mgr. Debora Lančová
Fyzikální ústav SU v Opavě
Email: debora.lancova@physics.slu.cz
Telefon: +420 776 072 756

prof. RNDr. Zdeněk Stuchlík, CSc.
Ředitel Fyzikálního ústavu SU v Opavě
Email: zdenek.stuchlik@physics.slu.cz
Telefon: +420 553 684 240

doc. RNDr. Gabriel Török, Ph.D.
Garant evropského projektu HR Award
Email: gabriel.torok@physics.cz
Telefon: +420 737 928 755

Odkazy:

[1] Více o projektu CREDO (anglicky)
[2] O projektu CREDO na Wikipedii (anglicky)
[3] Krátké video o použití mobilní aplikace v projektu CREDO




Seriál

  1. Úřad NASA publikoval snímek opavské univerzity
  2. Poselství civilizacím z centra Galaxie
  3. Astrofyzikové ze Slezské univerzity pátrají po červích dírách
  4. Již druhý snímek opavské univerzity uspěl v NASA
  5. Zapojte se s opavskými fyziky do hledání tajemné látky ve vesmíru. Postačí chytrý telefon!
  6. Češi zrekonstruovali slavný záběr „Einsteinova“ zatmění Slunce. Snímek byl oceněn i v NASA
  7. Záhady fyziky hvězd pomáhá v Opavě řešit dalekohled „WHOO!“
  8. Opavští fyzikové patří mezi světovou špičku ve výzkumu černých děr
  9. Opavští fyzikové studují, jak ochránit lidstvo před nebezpečným zářením černých děr a využít jej v jeho prospěch
  10. Záhadné záření přivádí opavské fyziky k úvahám o paralelních vesmírech
  11. Dokumentární film „Do Chile za zatměním Slunce“
  12. Jak poznat červí díru? Fyzikové z Opavy navrhují, po čem mají pátrat pozemské observatoře i Vesmírný dalekohled Jamese Webba
  13. V Opavě vystoupí možný laureát Nobelovy ceny. Přednášet bude o vzniku snímků černých děr
  14. Kosmický teleskop ATHENA prověří jevy v okolí černých děr předpovězené fyziky v Opavě
  15. Pozorování kosmického záření pomůže předpovídat zemětřesení na Zemi, tvrdí opavský vědec
  16. Doktorandka z Fyzikálního ústavu v Opavě spolupracuje s vědci ve slavné laboratoři Los Alamos
  17. Kolize černých děr pomáhají studentce Fyzikálního ústavu v Opavě ověřit nové teorie gravitace
  18. Černé díry vyhrávají do vesmíru „kosmickými akordy“, zjistili opavští fyzikové
  19. Na neutronových hvězdách mohou vznikat polární záře, zjistili opavští fyzikové


O autorovi

Štítky: Skrytá látka, CREDO


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »