Úvodní strana  >  Články  >  Sluneční soustava  >  Znovu objeveny tmavé skvrny na Neptunu

Znovu objeveny tmavé skvrny na Neptunu

HST odhalil v atmosféře planety Neptun rozsáhlou tmavou bouři (nahoře uprostřed) a v její blízkosti malou tmavou skvrnu
Autor: NASA, ESA, STScI, M. H. Wong (University of California, Berkeley), and L .A. Sromovsky and P. M. Fry

Astronomové použili Hubbleův kosmický teleskop HST a pozorovali záhadný temný vír na Neptunu neočekávaně směřující pryč od pravděpodobného zániku na obří modré planetě. Atmosférická bouře, která je větší než Atlantický oceán na Zemi, se zrodila na severní polokouli planety a pomocí HST byla objevena v roce 2018. Pozorování o rok později ukázala, že začala driftovat jižním směrem k rovníku, kde takovéto bouře podle očekávání zaniknou a zmizí z našeho pohledu.

K překvapení pozorovatelů HST zaznamenal změnu směru pohybu víru v srpnu 2020, kdy bouře zamířila k severu. Přestože HST sledoval podobné tmavé útvary posledních 30 let, toto neočekávané atmosférické chování je poněkud nové.

Třebaže je tato bouře záhadná, tak není osamocená. Hubbleův teleskop zaznamenal další menší temnou skvrnu v lednu roku 2020, která se dočasně objevila poblíž své velké „sestřenice“. Možná může být částí obřího víru, která se oddělila, driftovala pryč.

Jsme nadšení z těchto pozorování, protože tento malý tmavý fragment je potenciální částí tmavé skvrny, která vznikla v důsledku procesu rozpadu,“ říká Michael H. Wong z University of California at Berkeley. „To je proces, který nebyl nikdy pozorován. Viděli jsme některé další tmavé skvrny unikající pryč, avšak nikdy jsme nepozorovali jejich rozpad, i když to předpovídaly počítačové simulace.“

Velká bouře, která má průměr 7 400 kilometrů, je čtvrtou tmavou skvrnou zaznamenanou pomocí Hubbleova vesmírného teleskopu a pozorovanou na Neptunu od roku 1993. Dvě další tmavé skvrny byly objeveny sondou Voyager 2 v roce 1989 při průletu kolem vzdálené planety, avšak ty zmizely ještě předtím, než začala pozorování pomocí HST. Od té doby měl pouze HST dostatečnou ostrost a citlivost ve viditelném světle ke sledování těchto prchavých útvarů, které se následně objevily a potom zanikly zhruba v průběhu dvou roků. HST objevil tuto poslední skvrnu v roce 2018.

Zlomyslné počasí

Tmavé víry na Neptunu jsou systémy vysokého tlaku, které mohou vznikat ve středních šířkách a následně migrovat směrem k rovníku. Zůstávají stabilní v důsledku tzv. Coriolisovy síly, která způsobí, že bouře na severní polokouli rotují ve směru hodinových ručiček zásluhou rotace planety. (Tyto bouře se odlišují od uragánů na Zemi, které rotují proti pohybu hodinových ručiček, protože se jedná o oblasti nízkého tlaku.) Nicméně jak bouře driftuje směrem k rovníku, Coriolisův efekt oslabuje a bouře se rozpadá. V počítačových simulacích, které uskutečnilo několik různých týmů, tyto bouře následovaly více či méně přímé dráhy směrem k rovníku do té doby, než zde přestane působit Coriolisova síla a držet je pohromadě. Na rozdíl od simulátorů nejnovější obří bouře nemigrovala do rovníkové „zóny smrti“.

Bylo opravdu vzrušující pozorovat tento jedinečný akt podobný předpokládanému jednání, potom se však všechno náhle zastavilo a otočilo zpět,“ říká Michael H. Wong. „To bylo překvapující.“

Tmavá skvrna junior

Menší tmavá skvrna se mohla oddělit od většího tmavého víru během putování k rovníku Autor: NASA, ESA, STScI, M. H. Wong (University of California, Berkeley), and L. A. Sromovsky and P. M. Fry
Menší tmavá skvrna se mohla oddělit od většího tmavého víru během putování k rovníku
Autor: NASA, ESA, STScI, M. H. Wong (University of California, Berkeley), and L. A. Sromovsky and P. M. Fry
Pozorování pomocí HST rovněž odhalila, že záhadná dráha tmavého víru se obrátila do opačného směru ve stejné době, kdy se objevila nová skvrna, neformálně považovaná za „tmavou skvrnu jr.“. Nejnovější skvrna byla poněkud menší než její sestřenice, přičemž v průměru měřila 6 300 km. Nacházela se blízko okraje hlavní tmavé skvrny, blíže k rovníku – v poloze, kterou některé simulace ukazují jako místo rozpadu.

Nicméně načasování objevení se menší skvrny bylo neobvyklé. „Když jsem poprvé uviděl malou skvrnu, myslel jsem si, že se větší bouře rozpadla,“ říká Michael H. Wong. „Nemyslel jsem si, že se zde vytvořila další skvrna, protože ta menší se nacházela dále směrem k rovníku. A navíc se nacházela uvnitř nestabilního regionu. Avšak nemůžeme dokázat, že spolu oba útvary souvisejí. Zůstává to naprostou záhadou.“

Bylo to také v lednu, kdy tmavý vír zastavil svůj pohyb a znovu nastartoval směřování k severu,“ dodává Michael H. Wong. „Možná v důsledku rozpadu byl takový fragment dostatečný k tomu, aby se zastavil pohyb velké skvrny k rovníku.“

Astronomové pokračují v analýze velkého množství dat k určení, jestli zbytky malé tmavé skvrny setrvaly na Neptunu až do konce roku 2020.

Tmavá bouře stále záhadná

Je stále záhadou, jak tyto bouře vznikají, avšak tento poslední obří tmavý vír je dosud nejlépe studovaným. Objevení se tmavé skvrny může být v důsledku vyvýšených tmavých oblačných vrstev a to by mohlo informovat astronomy o vertikální struktuře bouří.

Další neobvyklou charakteristikou temné skvrny je absence jasné doprovodné oblačnosti v jejím okolí, která byla přítomná na fotografiích z Hubbleova teleskopu pořízených v době objevu víru v roce 2018. Podle všeho oblaka zanikla, když tento obří vír zastavil svoji cestu směrem k jihu. Jasná oblaka vznikají v době, kdy je proud vzduchu narušen a odkloněn směrem nahoru nad vír, což způsobí, že se plyny ochladí a vytvoří se krystalky metanového ledu. Nedostatek oblaků by mohl odhalit poznatky, jak se takové skvrny vyvíjejí.

Cíle projektu OPAL

HST pořídil mnoho fotografií tmavých skvrn jako součást programu OPAL (Outer Planet Atmospheres Legacy), což je dlouhodobý projekt Hubbleova teleskopu, jehož vedoucím je Amy Simon z NASA's Goddard Space Flight Center in Greenbelt, Maryland, který každoročně pořizuje globální mapy vnějších planet Sluneční soustavy, když se na svých oběžných drahách dostanou nejblíže k Zemi.

Hlavním cílem programu OPAL je studium dlouhodobých sezónních změn, stejně tak zachycení poměrně pomíjejících jevů, takových, které se objevují jako tmavé skvrny na Neptunu, případně na Uranu. Tyto tmavé bouře mohou být tak pomíjející, že v minulosti některé z nich se mohly objevit a zaniknout v průběhu několikaletých mezer v pozorováních Neptunu. Program OPAL zabezpečuje, že astronomové nevynechají žádnou z nich.

Zdroje a doporučené odkazy:
[1] nasa.gov
[2] hubblesite.org

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Tmavá bouře, HST Hubble Space Telescope, Planeta Neptun


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »