Úvodní strana  >  Články  >  Světelné znečištění  >  Anatomie Slunce

Anatomie Slunce

Stručná anatomie Slunce
Autor: ESA

Přestože je Slunce klidnou hvězdou, dokáže v určitých obdobích „pozlobit“ i technologickou činnost člověka na Zemi. Stojí rovněž za impozantním představením polárních září. Podívejme se nyní na to, z jakých vrstev se naše nejbližší hvězda skládá a jaké procesy na ní probíhají.

Jádro

Jedná se o místo, kde Slunce generuje svoji energii. Teplota v jádru dosahuje hodnot kolem 15 milionů stupňů. V kombinaci s velmi vysokým tlakem a hustotou plazmy způsobuje, že se zde jádra vodíku spojují dohromady, přičemž vzniká helium; při tomto procesu se rovněž uvolňuje obrovské množství energie. Tímto způsobem přemění Slunce každou sekundu čtyři miliony tun hmoty na energii. Zde začíná její pomalá cesta k povrchu Slunce.

Zářivá zóna

Označuje se také jako oblast zářivé rovnováhy. Jedná se o vrstvu přiléhající k jádru. Ačkoliv není tak hustá jako jádro, plazma je v zářivé zóně stále ještě nahuštěná tak silně, že proudění zde nemá místo. Místo toho energie vytvořená v jádru se pomalu šíří skrz plazma. Fotonům trvá zhruba 170 000 roků, než se posunou skrz zářivou zónu. Fotony se pohybují rychlostí světla, avšak mohou se posunout pouze o několik milimetrů, než jsou absorbovány atomy a následně vyzářeny v jiném směru. V horní části této zóny panuje teplota kolem dvou milionů stupňů. Ve spodní části, hned v kontaktu s jádrem Slunce, dosahuje teplota sedm milionů stupňů.

Konvektivní zóna

Další vrstva pojmenovaná konvektivní zóna se nachází mezi nejhlubší zářivou zónou a fotosférou. Její tloušťka je asi 200 000 kilometrů. Zatímco  její svrchní oblast má stejnou teplotu jako fotosféra (mezi 4 500 až 6 000 °C), ve spodní části konvektivní zóny panuje teplota asi dva miliony stupňů. Plazma ve spodní části zóny se rychle zahřívá. To vede k jejímu proudění vzhůru, a tak rychle stoupá, vytváří turbulentní konvektivní strukturu, poněkud podobnou vařící vodě – jenomže 200 000 km hluboko a obklopující celé Slunce.

Tachoklina

Je to hranice mezi konvektivní a zářivou zónou. Pod tachoklinou Slunce rotuje jako pevné těleso. Nad ní rotuje Slunce rozdílnými rychlostmi v souladu s jeho šířkou (vzdáleností od rovníku). Změna rychlosti rotace napříč tachoklinou je velmi rychlá a je důležitá pro vytváření magnetických polí, vedoucích ke vzniku slunečních skvrn. Byla objevena sluneční sondou SOHO (Solar and Heliospheric Observatory).

Fotosféra

Názvem fotosféra označujeme viditelný „povrch“ Slunce. Téměř veškeré záření ze Slunce je vysíláno z této tenké vrstvy o tloušťce několika stovek kilometrů, která spočívá na horním okraji konvektivní zóny. Je to oblast, kde energie generovaná v jádru může nakonec volně unikat do kosmického prostoru. Teplota fotosféry kolísá místo od místa v rozmezí 4 500 až 6 000 °C.

Chromosféra

Tato vrstva se nachází nad fotosférou, kde hustota plazmy dramaticky klesá. Povšechně vzato chromosféra je tlustá zhruba 1 000 až 2 000 kilometrů, teplota zde stoupá z hodnoty zhruba 4 000 °C až na přibližně 25 000 °C. Tenké výtrysky chromosférického plynu, známé jako spikule, mohou dosáhnout výšky až 15 000 kilometrů.

Spikule objevil v roce 1877 Angelo Secchi, své jméno však získaly až v roce 1945 od italského fyzika W. O. Robertse (z latinského spicule = klásky). Spikule jsou základní magnetické struktury v chromosféře. V každém okamžiku je na Slunci asi milion spikulí. Jejich životnost je 5 až 15 minut; za tu dobu dosáhnou výšky 5 000 až 15 000 km (hmota v nich se pohybuje rychlostí 20 až 30 km/s) a šířky 1 km. Táhnou se z fotosféry přes chromosféru až do koróny. V koróně se některé z nich začnou vracet zpět na povrch Slunce, zbytek se rozplyne.

Přechodová oblast

Jedná se o tenkou nepravidelnou vrstvu, která odděluje relativně chladnou chromosféru od mnohem teplejší koróny. Napříč přechodovou zónou teplota sluneční plazmy vystupuje ze zhruba 20 000 až téměř na jeden milion stupňů Celsia. Zatímco v konvektivní zóně a částečně rovněž ve sluneční fotosféře dominují proudy, které jsou schopné posunout regiony silného magnetického toku, přechodové oblasti a koróně dominují magnetická pole, která urychlují plazmu k pohybu převážně podél siločar magnetického pole.

Koróna

Tato vnější atmosféra Slunce se rozprostírá miliony kilometrů daleko. Nejlépe je pozorovatelná v průběhu úplného zatmění Slunce. Plazma v koróně je mimořádně horká s teplotou více než jeden milion stupňů, avšak je velmi zředěná. Její hustota je typicky pouze jedna biliontina hustoty fotosféry. V koróně má svůj původ sluneční vítr.

Koróna je velmi řídká vnější vrstva sluneční atmosféry. Neexistuje žádná přesně definovaná její horní mez, plynule přechází do meziplanetárního prostoru. V běžných podmínkách není pozorovatelná, protože jas koróny je pouze miliontinou jasu fotosféry. Její tvar se mění v závislosti na slunečním cyklu. V minimu má koróna zhruba kruhový tvar, během maxima je koróna ovlivněna chaotickým magnetickým polem a zdá se být „rozcuchaná“.

Protuberance

Sluneční protuberance Autor: ESA
Sluneční protuberance
Autor: ESA
Jedná se o velké struktury, často v rozsahu několika tisíc kilometrů. Jsou tvořeny spletitými siločarami magnetických polí, které drží pohromadě husté koncentrace sluneční plazmy zavěšené nad povrchem Slunce a často mají podobu smyček, které se klenou z chromosféry. Mohou přetrvávat několik desítek minut až několik měsíců.

Mohou dosáhnout výšky více než 100 000 km. Objevují se v různých tvarech a velikostech. Obecně jako protuberance označujeme oblaka hustšího a chladnějšího plazmatu v porovnání s okolním prostředím. Úkazy se nacházejí v chromosféře až koróně. Většinou je vidíme nad okrajem slunečního disku jako jasný útvar. Historicky pro ně vznikl ještě jeden termín, a to filament. Jedná se o případ, kdy se protuberance promítá jako tmavý „hadovitý“ útvar na pozadí jasné chromosféry.

Erupce

První erupci pozoroval R. Carrington v 19. století jako tzv. bílou erupci. S nástupem úzkopásmových filtrů se zvětšil počet pozorování, zejména v čáře Hα, která je typickou čárou chromosféry. Sluneční erupci můžeme nejjednodušeji popsat jako rychlé uvolnění energie, která se nahromadila v magnetickém poli aktivní oblasti. Erupce se často nacházejí mezi regiony s opačnou magnetickou polaritou. Magnetická pole směřující v opačných směrech se vzájemně spojí a nastane proces nazývaný „magnetická rekonexe“. Dojde k uvolnění energie v podobě tepla a záření v celém elektromagnetickém spektru. Energie uvolněná při slunečních erupcích silně ovlivňuje chování slunečního větru.

Sluneční skvrny

Sluneční skvrny Autor: Académie royale des sciences de Suède
Sluneční skvrny
Autor: Académie royale des sciences de Suède
Jsou to dočasně existují útvary ve fotosféře. Vypadají jako tmavá místa oproti okolním jasným regionům ve fotosféře, protože jsou chladnější, a tak nevyzařují tak velké množství světla. Na jejich vznik mají vliv magnetická pole, omezující proudění skrz fotosféru Slunce a dochází zde k ochlazování plynu. Sluneční skvrny mohou mít velikost od několika desítek kilometrů v průměru až po ty největší s průměrem 150 000 kilometrů.

Sluneční skvrna je oblast na „povrchu“ Slunce, ve které magnetické pole zabraňuje v proudění, a tak se vytvářejí oblasti s nižší povrchovou teplotou, než má okolí. Magnetické pole brzdí stoupající horká oblaka v konvektivní vrstvě. Díky tomu je potlačen přenos energie z nitra Slunce do skvrny, která tak má teplotu až o 2000 K nižší. Skvrny mají obvykle dvě části: tmavé a chladnější jádro zvané umbra (stín) a penumbru (polostín). Teplota umbry se pohybuje kolem 3700 K a jas je pouze 5-15 % fotosféry. Skvrny geometricky vytvářejí prohlubeň, sníženou uprostřed pod úroveň okolní klidné fotosféry.

Fakulová pole

Fakule jsou světlejší oblasti ve fotosféře; jejich teplota je o 200-400 K vyšší než u okolí. Mohou být samostatné i ve shlucích. Fakulová pole se vyskytují v aktivních oblastech ještě před vytvořením slunečních skvrn a zanikají až několik slunečních otoček po zániku skupiny (v některých případech je magnetické pole příliš slabé na vytvoření skvrn a fakulové pole je tedy beze skvrn po celou dobu jejich existence). Ačkoliv všechny skvrny jsou doprovázené fakulemi, ne všechny fakule se vyskytují pouze u slunečních skvrn.

Granulace

V podstatě se jedná o konvektivní bubliny, které se objevují ve fotosféře. Každá granule má průměr kolem 1 000 kilometrů a skládá se z horké plazmy vystupující z nitra. Jakmile vyzáří svoji energii do kosmického prostoru, plazma zchladne, klesá po straně granule a ponoří se zpět dolů do nitra Slunce. Jednotlivé granule existují zhruba 20 minut a následně se objeví nové granule na poněkud odlišném místě.

Výrony koronální hmoty

Jsou to obrovské výrony několika miliard tun plazmy a magnetických polí ze sluneční koróny. Pohybují se směrem od Slunce rychlostí několika stovek až tisíc kilometrů za sekundu a jestliže jsou poslány směrem ke dráze Země, mohou vést k vytvoření tzv. geomagnetických bouří.

Zdroje a doporučené odkazy:
[1] scitechdaily.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Sluneční jevy, Sluneční vrstvy, Slunce


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »