Úvodní strana  >  Články  >  Vzdálený vesmír  >  Astronomové vrhli nové světlo na pohyb hvězd v galaktickém disku

Astronomové vrhli nové světlo na pohyb hvězd v galaktickém disku

Poloha korotačního poloměru v galaktickém disku
Autor: University of Arkansas

Astrofyzikové z University of Arkansas uskutečnili významný pokrok v objasnění záhady, jak si disky v galaxiích zachovávají tvar svých spirálních ramen. Jejich objev podporuje teorii, podle níž tato ramena vznikají v důsledku hustotních vln hmoty, která vytváří spirální strukturu při svém putování napříč galaxií. „Struktura spirálních ramen v discích galaxií je záhadou,“ říká Ryan Miller, hostující odborný asistent fyziky. „Nikdo neví, co určuje tvar těchto spirál a proč mají určitý počet ramen. Naše výzkumy poskytují jasnou odpověď alespoň na část této záhady.“

Asi 70 % všech galaxií včetně naší Mléčné dráhy obsahuje galaktické disky. Jsou charakteristické svými rameny spirálního tvaru, avšak astronomové si nejsou jisti, jak vznikají a jak si uchovávají svůj tvar.

Záhada má počátek v jednoduchém paradoxu: hvězdy v galaktickém disku obíhají kolem centra galaxie – tzv. galaktické výduti – a hvězdy blíže tomuto centru obíhají rychleji než vzdálenější hvězdy u okraje galaxie. Avšak pokud by spirální ramena byla složena z pevně zafixovaných skupin hvězd, skupiny ve vzdálenější poloze by absolvovaly větší vzdálenosti než hvězdy uprostřed, aby si uchovaly spirální uspořádání. Podobně například závodníci ve vnějším pruhu oválné dráhy musí běžet rychleji, aby si udrželi svoji polohu ve skupině.

Již v 60. letech minulého století astronomové navrhli „teorii hustotních vln“ k vysvětlení tohoto paradoxu. Teorie předpokládala, že spirální ramena v disku galaxií nejsou tvořena stálými shluky hvězd. Místo toho jsou tato ramena vlnami hustějších oblastí, které se pohybují skrz hvězdy. Hvězdy se pohybují podle fyzikálních zákonů a jak obíhají kolem centra galaxie, setkávají se s hustějšími oblastmi.

Mnoho astronomů přirovnávalo vlny hustější látky k dopravní zácpě, ve které je rychlost hvězd obíhajících po kruhové dráze kolem centra galaxie ovlivněna hustější hmotou stejným způsobem, jako když je jízda automobilu ovlivňována na přeplněné části silnice. Automobil zpomalí, když se dostane do dopravní zácpy a následně se pohybuje rychleji po překonání této situace. Hustější oblasti mají rovněž vliv na oblaka plynu, která přecházejí přes tuto oblast. Zhušťují se a jejich části se smršťují do nových hvězd.

Ryan Miller spolupracoval na výzkumu s dalšími kolegy, kterými byli: Julia a Daniel Kennefick, Rafael Eurfrasio, Douglas Shields, Mahamed Shameer Abdeen, Erik Monson, a Benjamin Davis. Jejich společná práce byla publikována v časopise Astrophysical Journal. Ryan Miller se svými spolupracovníky podpořil teorii hustotních vln pohledem na hvězdy odlišného stáří a porovnáním jejich poloh vůči centru hustotní vlny.

V souladu s touto teorií byli vědci schopni ukázat na každé rameno galaxie, kde rychlost pohybu hustotní vlny a rychlost pohybu hvězd je stejná. Jedná se o tzv. korotační poloměr. Hvězdy uvnitř korotačního poloměru by se měly pohybovat rychleji než hustotní vlna, protože se nacházejí blíže k centru galaxie. Proto se starší hvězdy dostanou dále dopředu a pohybují se z místa svého zrodu poblíž vlny. Na vnější straně korotačního poloměru, kde se hvězdy pohybují mnohem pomaleji než hustotní vlna, starší hvězdy zůstávají pozadu za hustotní vlnou.

Astronomové prozkoumali snímky galaxií v databázi NASA/IPAC Extragalactic Database, kterou spravuje NASA Jet Propulsion Laboratory (JPL) na California Institute of Technology (Caltech). Pro každou galaxii prozkoumali fotografie na různých vlnových délkách záření, což představuje hvězdy různého stáří. Zjistili, že každá skupina hvězd se zformovala ve spirálním rameni v nepatrně odlišném úhlu spirálního ramene ve vztahu k centru galaxie. Na základě porovnání těchto odlišných úhlů k úhlu tvořenému mezi centrem galaxie a hustotní vlnou ukázali, že poloha těchto skupin hvězd odpovídá předpovědi podle teorie hustotních vln.

Ačkoliv astronomové poskytli důkazy, proč si spirální ramena zachovávají svůj tvar, některé otázky zůstávají. Je snadné pochopit, proč dochází k dopravní zácpě, když dojde k nehodě automobilu, která sníží tři dopravní pruhy na jeden. Avšak určit, co vytváří hustotní vlny, tak to je stále ještě otevřenou otázkou.

Zdroje a doporučené odkazy:
[1] phys.org
[2] news.uark.edu

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Korotační poloměr, Spirální ramena, Galaktický disk


50. vesmírný týden 2024

50. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 9. 12. do 15. 12. 2024. Měsíc je nyní na večerní obloze ve fázi kolem první čtvrti a dorůstá k úplňku. Nejvýraznější planetou je na večerní obloze Venuše a během noci Jupiter. Ideální viditelnost má večer Saturn a ráno Mars. Aktivita Slunce je nízká. Nastává maximum meteorického roje Geminid. Uplynulý týden byl mimořádně úspěšný z pohledu evropské kosmonautiky, ať už vypuštěním mise Proba-3 nebo úspěšného startu rakety Vega-C s družicí Sentinel-1C. A před čtvrtstoletím byl vypuštěn úspěšný rentgenový teleskop ESA XMM-Newton.

Další informace »

Česká astrofotografie měsíce

Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách

Titul Česká astrofotografie měsíce za říjen 2024 obdržel snímek „Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách“, jehož autorem je Daniel Kurtin.     Komety jsou fascinující objekty, které obíhají kolem Slunce a přinášejí s sebou kosmické stopy ze vzdálených

Další informace »

Poslední čtenářská fotografie

M42 Veľká hmlovina v Orióne

Hmlovina v Orióne (známa aj ako Messier 42, M42 alebo NGC 1976) je difúzna hmlovina v Mliečnej ceste, ktorá sa nachádza južne od Oriónovho pásu v súhvezdí Orión a je známa ako stredná „hviezda“ v „meči“ Orióna. Patrí medzi najjasnejšie hmloviny a je viditeľná voľným okom na nočnej oblohe so zdanlivou magnitúdou 4,0. Je vzdialená 1 344 ± 20 svetelných rokov (412,1 ± 6,1 pc) a je najbližšou oblasťou masívnej hviezdotvorby k Zemi. Priemer hmloviny M42 sa odhaduje na 24 svetelných rokov (takže jej zdanlivá veľkosť zo Zeme je približne 1 stupeň). Jej hmotnosť je približne 2 000-krát väčšia ako hmotnosť Slnka. V starších textoch sa hmlovina v Orióne často označuje ako Veľká hmlovina v Orióne. Hmlovina v Orióne je jedným z najsledovanejších a najfotografovanejších objektov nočnej oblohy a patrí medzi najintenzívnejšie skúmané nebeské útvary. Hmlovina odhalila veľa o procese vzniku hviezd a planetárnych systémov z kolabujúcich oblakov plynu a prachu. Astronómovia priamo pozorovali protoplanetárne disky a hnedých trpaslíkov v hmlovine, intenzívne a turbulentné pohyby plynu a fotoionizačné účinky masívnych blízkych hviezd v hmlovine. Hmlovina v Orióne je viditeľná voľným okom aj z oblastí postihnutých svetelným znečistením. Je viditeľná ako stredná „hviezda“ v „meči“ Orióna, čo sú tri hviezdy nachádzajúce sa južne od Oriónovho pásu. „Hviezda“ sa bystrým pozorovateľom zdá rozmazaná a hmlovina je zrejmá v ďalekohľade alebo malom teleskope. Maximálna povrchová jasnosť centrálnej oblasti M42 je približne 17 Mag/arcsec2 a vonkajšia modrastá žiara má maximálnu povrchovú jasnosť 21,3 Mag/arcsec2. V hmlovine Orión sa nachádza veľmi mladá otvorená hviezdokopa, známa ako Trapézová hviezdokopa vďaka asterizmu jej štyroch primárnych hviezd v priemere 1,5 svetelného roka. Dve z nich možno za nocí s dobrou viditeľnosťou rozlíšiť na ich zložené dvojhviezdy, čo dáva spolu šesť hviezd. Hviezdy Trapézovej hviezdokopy spolu s mnohými ďalšími hviezdami sú ešte len na začiatku svojej existencie. Hviezdokopa Trapez je súčasťou oveľa väčšej hviezdokopy Hmlovina v Orióne, ktorá je združením približne 2 800 hviezd s priemerom 20 svetelných rokov. Hmlovinu Orion zasa obklopuje oveľa väčší komplex molekulárnych mrakov Orión, ktorý má stovky svetelných rokov a rozprestiera sa v celom súhvezdí Orión. Pred dvoma miliónmi rokov mohla byť kopa hmloviny Orión domovom unikajúcich hviezd AE Aurigae, 53 Arietis a Mu Columbae, ktoré sa v súčasnosti od hmloviny vzďaľujú rýchlosťou viac ako 100 km/s (62 míľ/s). Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 150/600 (150/450 F3), Starizona Nexus 0.75x komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, Gemini EAF focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 1100x30 sec. Lights gain15, offset113 pri -10°C, 745x60 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, 97x120 sec. Lights gain15, offset113 pri -10°C cez Hutech IDAS NB3, master bias, 300 flats, master darks, master darkflats 12.10. až 1.12.2024

Další informace »