Úvodní strana  >  Články  >  Vzdálený vesmír  >  HST na stopě srážky dvou otevřených hvězdokup

HST na stopě srážky dvou otevřených hvězdokup

Pohled na otevřenou hvězdokupu uvnitř mlhoviny 30 Doradus (foto HST)
Pohled na otevřenou hvězdokupu uvnitř mlhoviny 30 Doradus (foto HST)
Astronomové zkoumající data z Hubblova kosmického dalekohledu HST zachytili dvě otevřené hvězdokupy plné velmi hmotných hvězd, které se mohou nacházet v počátečním stadiu vzájemné srážky. Hvězdokupy jsou od Země vzdáleny 170 000 světelných roků a nacházejí se ve Velkém Magellanově oblaku, což je malá satelitní galaxie doprovázející naši Galaxii.

Nejprve si astronomové mysleli, že se jedná o jednu hvězdokupu v centru oblasti 30 Doradus (známé též jako mlhovina Tarantule), avšak nyní bylo zjištěno, že se jedná o dvě hvězdokupy, které se ve svém stáří liší asi o jeden milión roků.

Celý útvar 30 Doradus byl oblastí aktivní hvězdotvorby po dobu asi 25 miliónů roků a zatím není známo, jak dlouho může v této oblasti tvorba nových masivních hvězd ještě pokračovat. Menší hvězdokupy, které se spojí v jeden větší objekt, mohou pomoci astronomům vysvětlit původ většiny těch největších známých hvězdných seskupení ve vesmíru.

Vedoucí astronomka Elena Sabbi (Space Telescope Science Institute, Baltimore, Maryland) se svými spolupracovníky začala prohlížet tuto oblast, když pátrala po hvězdách-uprchlících, které se pohybují vysokou rychlostí v důsledku procesů, při nichž byly vymrštěny z rodného hnízda. "Hvězdy vznikají velmi pravděpodobně ve hvězdokupách, ale v tomto případě zde existuje velké množství mladých hvězd, které se nacházejí vně oblasti 30 Doradus. Nemohly však vzniknout tam, kde se nyní nacházejí. Musely být z oblasti 30 Doradus vymrštěny vysokou rychlostí," říká Elena Sabbi.

Později si astronomka všimla na hvězdokupě ještě něčeho neobvyklého, když zkoumala rozložení hvězd o malé hmotnosti zaznamenaných na snímku z HST. Rozložení není sférické, jak bylo očekáváno, ale má vzhled poněkud podobný vzhledu dvou splývajících galaxií, kdy je jejich tvar deformovaný v důsledku slapových sil. Podrobný výzkum pomocí HST svědčí pro jejich blížící se splynutí. Vychází z pohledu na protaženou strukturu jedné z hvězdokup a z určení rozdílu věku obou seskupení hvězd.

Podle některých modelů se obří plynná oblaka, z nichž otevřené hvězdokupy vznikají, mohou rozpadnout na menší části. V jedné takové malé části překotně vznikly hvězdy, které pak mohou ovlivňovat větší hvězdokupu a nakonec s ní splynout. Právě toto vzájemné působení je tím, o čem si Elena Sabbi a její spolupracovníci myslí, že pozorují v mlhovině 30 Doradus.

Poloha otevřené hvězdokupy v mlhovině 30 Doradus
Poloha otevřené hvězdokupy v mlhovině 30 Doradus
Kromě toho tu je nezvykle velký počet "vysokorychlostních" hvězd v okolí 30 Doradus. Astronomové se domnívají, že tyto hvězdy, často označované jako hvězdy "na útěku", byly vymrštěny z jádra mlhoviny 30 Doradus jako důsledek dynamických interakcí. Tyto interakce jsou velmi časté během procesu označovaného jako zhroucení jádra, při kterém velmi hmotné hvězdy "padají" do centra hvězdokupy v důsledku dynamického ovlivňování málo hmotnými hvězdami. Když velké množství hmotných hvězd dosáhne středu hvězdokupy, jádro se stává nestabilní a dochází k vymršťování některých masivních hvězd do okolního prostředí.

Velká hvězdokupa R136 v centru mlhoviny 30 Doradus je příliš mladá na to, aby zde již proběhlo zhroucení jádra. Nicméně přestože u menších hvězdokup probíhá tento proces mnohem rychleji, velký počet "prchajících" hvězd, které byly objeveny v útvaru 30 Doradus, může být lépe vysvětlen, jestliže dochází k jejímu spojování s hvězdokupou R136.

Další výzkumy budou na tuto oblast zaměřeny mnohem detailněji a bude probíhat pátrání, zda ještě nějaké další hvězdokupy interagují s pozorovaným seskupením hvězd. Především připravovaný kosmický dalekohled NASA s názvem JWST (James Webb Space Telescope), který bude citlivý na infračervené záření, umožní astronomům nahlédnout hlouběji do oblastí mlhoviny Tarantule, které jsou ve viditelném světle neproniknutelné. V těchto oblastech jsou ukryty chladné a slabě zářící hvězdy, schované uvnitř prachových kokonů (zámotků). JWST bude schopen snáze odhalit populaci hvězd hlouběji ukrytých v této mlhovině.

Mlhovina 30 Doradus je pro astronomy mimořádně zajímavá, protože je dobrým příkladem toho, jak vypadaly oblasti vzniku hvězd v mladém vesmíru. Tento objev může pomoci astronomům porozumět vzniku otevřených hvězdokup a vzniku samotných hvězd v počáteční fázi vývoje vesmíru.

Zdroj: hubblesite.org
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: NASA, Mlhovina , HST


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »