Úvodní strana  >  Články  >  Vzdálený vesmír  >  Stavební bloky života se mohly vytvářet v mezihvězdných oblacích dlouho před vznikem hvězd

Stavební bloky života se mohly vytvářet v mezihvězdných oblacích dlouho před vznikem hvězd

Umělecká představa glycinu společně s temným mezihvězdným oblakem v laboratoři
Autor: Harold Linnartz

Mezinárodní tým vědců prokázal, že glycin, nejjednodušší aminokyselina a důležitý stavební blok života, mohl vzniknout i za drsných podmínek, které ovládaly chemizmus vesmíru. Výsledky práce publikované v časopise Nature Astronomy vedou k závěru, že glycin a velmi pravděpodobně i další aminokyseliny se vytvořily v hustých mezihvězdných oblacích mnohem dříve, než se staly součástí nových hvězd a planet.

Komety jsou původním materiálem v naší Sluneční soustavě a odrážejí molekulární složení přítomné v době, kdy se Slunce a planety právě vytvářely. Detekce glycinu přítomného v oblasti komy komety 67P/Čurjumov-Gerasimenko sondou Rosetta a ve vzorcích z komety Wild 2 dopravených na Zemi kosmickou sondou Stardust napovídají, že aminokyseliny, jako je například glycin, se vytvořily již dlouho před vznikem hvězd. Nicméně až donedávna se předpokládalo, že utváření glycinu vyžaduje energii a stanovení jasných omezení okolního prostředí, za jakých se může vytvářet.

V nové studii mezinárodní tým astrofyziků a astrochemiků vypracoval modely většinou založené na výzkumu Laboratory for Astrophysics at Leiden Observatory, the Netherlands a prokázal, že se glycin pravděpodobně vytvářel na povrchu ledových zrníček prachu bez přítomnosti energie prostřednictvím tzv. „černé chemie“. Zjištění je v protikladu s předešlými výzkumy, které předpokládaly, že bylo vyžadováno ultrafialové záření za účelem produkce této molekuly.

Černá chemie se odkazuje na chemii bez potřebného energetického záření,“ říká Sergio Ioppolo. „V laboratoři jsme byli schopni simulovat podmínky v temných mezihvězdných oblacích, kde jsou studené prachové částice pokryty tenkou vrstvičkou ledu a následně bombardované dopadajícími atomy, což způsobuje, že předchůdce glycinu se rozpadne a reaguje za zprostředkované opětovné rekombinace.“ Sergio Ioppolo se svými spolupracovníky poprvé prokázal, že se zde mohl vytvářet methylamin, předchůdce glycinu.

Následně za použití nastaveného ultra-vysokého vakua, vyzbrojeni sérií svazků atomických paprsků a přesných diagnostických přístrojů byli vědci schopni potvrdit, že glycin zde může rovněž vznikat a že přítomnost vodního ledu byla v tomto procesu zásadní.

Další výzkum za použití astrochemických modelů potvrdil experimentální závěry a umožnil týmu vědců extrapolovat data obdržená za typicky laboratorní časový rozsah na mezihvězdné podmínky odpovídající miliónům roků.

Z toho jsme usoudili, že nízké, avšak podstatné množství glycinu se mohlo časem ve vesmíru vytvořit,“ říká spoluautor studie profesor Herma Cuppen, vědecký pracovník na Radboud University.

Model molekuly glycinu Autor: Public Domain
Model molekuly glycinu
Autor: Public Domain
Důležitým závěrem této práce je, že molekuly, které považujeme za základní stavební bloky života, se vytvořily již v období, které značně předcházelo vzniku hvězd a planet,“ říká hlavní autor studie Harold Linnartz, ředitel Laboratory for Astrophysics at Leiden Observatory. „Tak časný vznik glycinu ve vyvíjejících se hvězdotvorných oblastech naznačuje, že tato aminokyselina mohla být všudypřítomná v kosmickém prostoru a být uchována v množství ledu již předtím, než se stala součástí komet a planetesimál. Ty představovaly materiál, z kterého se nakonec zformovaly planety.“

Jakmile glycin vznikl, mohl se rovněž stát předchůdcem dalších složitých organických molekul,“ dodává Sergio Ioppolo. „Následně stejným mechanismem, v podstatě, může být jiná reaktivní skupina přidána k nosné konstrukci glycinu, což vede k utváření dalších aminokyselin v temných mezihvězdných oblacích, jako je například alanin a serin.“

Nakonec seznam těchto obohacených organických molekul je obsažen v nebeských tělesech, jako jsou komety, které je dopravily na mladé planety a staly se součástí naší Země a ostatních planet.

Vyřešení procesu vytváření a rozložení složitých organických molekul v kosmickém prostoru je klíčem k pochopení počátečních podmínek pro vznik života na Zemi. Je jasným důkazem, že komety jsou nejpůvodnější planetární tělesa ve Sluneční soustavě a že organické molekuly přítomné v jejich ledu mají mezihvězdný původ. Jak a kdy takové složité molekuly vznikly v průběhu procesu formování hvězd a planet, zůstává otázkou dalších výzkumů.

Zdroje a doporučené odkazy:
[1] sci-news.com
[2] phys.org



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Stavební bloky života, Aminokyseliny, Glycin


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »