Úvodní strana  >  Články  >  Vzdálený vesmír  >  Stavební bloky života se mohly vytvářet v mezihvězdných oblacích dlouho před vznikem hvězd

Stavební bloky života se mohly vytvářet v mezihvězdných oblacích dlouho před vznikem hvězd

Umělecká představa glycinu společně s temným mezihvězdným oblakem v laboratoři
Autor: Harold Linnartz

Mezinárodní tým vědců prokázal, že glycin, nejjednodušší aminokyselina a důležitý stavební blok života, mohl vzniknout i za drsných podmínek, které ovládaly chemizmus vesmíru. Výsledky práce publikované v časopise Nature Astronomy vedou k závěru, že glycin a velmi pravděpodobně i další aminokyseliny se vytvořily v hustých mezihvězdných oblacích mnohem dříve, než se staly součástí nových hvězd a planet.

Komety jsou původním materiálem v naší Sluneční soustavě a odrážejí molekulární složení přítomné v době, kdy se Slunce a planety právě vytvářely. Detekce glycinu přítomného v oblasti komy komety 67P/Čurjumov-Gerasimenko sondou Rosetta a ve vzorcích z komety Wild 2 dopravených na Zemi kosmickou sondou Stardust napovídají, že aminokyseliny, jako je například glycin, se vytvořily již dlouho před vznikem hvězd. Nicméně až donedávna se předpokládalo, že utváření glycinu vyžaduje energii a stanovení jasných omezení okolního prostředí, za jakých se může vytvářet.

V nové studii mezinárodní tým astrofyziků a astrochemiků vypracoval modely většinou založené na výzkumu Laboratory for Astrophysics at Leiden Observatory, the Netherlands a prokázal, že se glycin pravděpodobně vytvářel na povrchu ledových zrníček prachu bez přítomnosti energie prostřednictvím tzv. „černé chemie“. Zjištění je v protikladu s předešlými výzkumy, které předpokládaly, že bylo vyžadováno ultrafialové záření za účelem produkce této molekuly.

Černá chemie se odkazuje na chemii bez potřebného energetického záření,“ říká Sergio Ioppolo. „V laboratoři jsme byli schopni simulovat podmínky v temných mezihvězdných oblacích, kde jsou studené prachové částice pokryty tenkou vrstvičkou ledu a následně bombardované dopadajícími atomy, což způsobuje, že předchůdce glycinu se rozpadne a reaguje za zprostředkované opětovné rekombinace.“ Sergio Ioppolo se svými spolupracovníky poprvé prokázal, že se zde mohl vytvářet methylamin, předchůdce glycinu.

Následně za použití nastaveného ultra-vysokého vakua, vyzbrojeni sérií svazků atomických paprsků a přesných diagnostických přístrojů byli vědci schopni potvrdit, že glycin zde může rovněž vznikat a že přítomnost vodního ledu byla v tomto procesu zásadní.

Další výzkum za použití astrochemických modelů potvrdil experimentální závěry a umožnil týmu vědců extrapolovat data obdržená za typicky laboratorní časový rozsah na mezihvězdné podmínky odpovídající miliónům roků.

Z toho jsme usoudili, že nízké, avšak podstatné množství glycinu se mohlo časem ve vesmíru vytvořit,“ říká spoluautor studie profesor Herma Cuppen, vědecký pracovník na Radboud University.

Model molekuly glycinu Autor: Public Domain
Model molekuly glycinu
Autor: Public Domain
Důležitým závěrem této práce je, že molekuly, které považujeme za základní stavební bloky života, se vytvořily již v období, které značně předcházelo vzniku hvězd a planet,“ říká hlavní autor studie Harold Linnartz, ředitel Laboratory for Astrophysics at Leiden Observatory. „Tak časný vznik glycinu ve vyvíjejících se hvězdotvorných oblastech naznačuje, že tato aminokyselina mohla být všudypřítomná v kosmickém prostoru a být uchována v množství ledu již předtím, než se stala součástí komet a planetesimál. Ty představovaly materiál, z kterého se nakonec zformovaly planety.“

Jakmile glycin vznikl, mohl se rovněž stát předchůdcem dalších složitých organických molekul,“ dodává Sergio Ioppolo. „Následně stejným mechanismem, v podstatě, může být jiná reaktivní skupina přidána k nosné konstrukci glycinu, což vede k utváření dalších aminokyselin v temných mezihvězdných oblacích, jako je například alanin a serin.“

Nakonec seznam těchto obohacených organických molekul je obsažen v nebeských tělesech, jako jsou komety, které je dopravily na mladé planety a staly se součástí naší Země a ostatních planet.

Vyřešení procesu vytváření a rozložení složitých organických molekul v kosmickém prostoru je klíčem k pochopení počátečních podmínek pro vznik života na Zemi. Je jasným důkazem, že komety jsou nejpůvodnější planetární tělesa ve Sluneční soustavě a že organické molekuly přítomné v jejich ledu mají mezihvězdný původ. Jak a kdy takové složité molekuly vznikly v průběhu procesu formování hvězd a planet, zůstává otázkou dalších výzkumů.

Zdroje a doporučené odkazy:
[1] sci-news.com
[2] phys.org



Štítky: Stavební bloky života, Aminokyseliny, Glycin


50. vesmírný týden 2024

50. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 9. 12. do 15. 12. 2024. Měsíc je nyní na večerní obloze ve fázi kolem první čtvrti a dorůstá k úplňku. Nejvýraznější planetou je na večerní obloze Venuše a během noci Jupiter. Ideální viditelnost má večer Saturn a ráno Mars. Aktivita Slunce je nízká. Nastává maximum meteorického roje Geminid. Uplynulý týden byl mimořádně úspěšný z pohledu evropské kosmonautiky, ať už vypuštěním mise Proba-3 nebo úspěšného startu rakety Vega-C s družicí Sentinel-1C. A před čtvrtstoletím byl vypuštěn úspěšný rentgenový teleskop ESA XMM-Newton.

Další informace »

Česká astrofotografie měsíce

Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách

Titul Česká astrofotografie měsíce za říjen 2024 obdržel snímek „Velká kometa C/2023 A3 Tsuchinshan-ATLAS v podzimních barvách“, jehož autorem je Daniel Kurtin.     Komety jsou fascinující objekty, které obíhají kolem Slunce a přinášejí s sebou kosmické stopy ze vzdálených

Další informace »

Poslední čtenářská fotografie

NGC1909 Hlava čarodejnice

Veríte v čarodejnice? Lebo ja som Vám hlavu jednej takej vesmírnej čarodejnice aj vyfotil. NGC 1909, alebo aj inak označená IC 2118 (vďaka svojmu tvaru známa aj ako hmlovina Hlava čarodejnice) je mimoriadne slabá reflexná hmlovina, o ktorej sa predpokladá, že je to starobylý pozostatok supernovy alebo plynný oblak osvetľovaný neďalekým superobrom Rigel v Orióne. Nachádza sa v súhvezdí Eridanus, približne 900 svetelných rokov od Zeme. Na modrej farbe Hlavy čarodejnice sa podieľa povaha prachových častíc, ktoré odrážajú modré svetlo lepšie ako červené. Rádiové pozorovania ukazujú značnú emisiu oxidu uhoľnatého v celej časti IC 2118, čo je indikátorom prítomnosti molekulárnych mrakov a tvorby hviezd v hmlovine. V skutočnosti sa hlboko v hmlovine našli kandidáti na hviezdy predhlavnej postupnosti a niektoré klasické hviezdy T-Tauri. Molekulárne oblaky v IC 2118 pravdepodobne ležia vedľa vonkajších hraníc obrovskej bubliny Orion-Eridanus, obrovského superobalu molekulárneho vodíka, ktorý vyfukovali vysokohmotné hviezdy asociácie Orion OB1. Keď sa superobal rozširuje do medzihviezdneho prostredia, vznikajú priaznivé podmienky pre vznik hviezd. IC 2118 sa nachádza v jednej z takýchto oblastí. Vetrom unášaný vzhľad a kometárny tvar jasnej reflexnej hmloviny silne naznačujú silnú asociáciu s vysokohmotnými žiariacimi hviezdami Orion OB1. Prepracovaná verzia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 150/600 (150/450 F3), Starizona Nexus 0.75x komakorektor, QHY 8L-C, SVbony UV/IR cut, Gemini EAF focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 209x240 sec. Lights gain15, offset113 pri -10°C, master bias, 90 flats, master darks, master darkflats 4.11. až 7.11.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »