Úvodní strana  >  Články  >  Vzdálený vesmír  >  Supermasivní černá díra v centru Mléčné dráhy nemusí být osamělá

Supermasivní černá díra v centru Mléčné dráhy nemusí být osamělá

Umělecké ztvárnění binárního systému tvořeného dvojicí černých děr
Autor: NASA/ESA/G. Bacon, STScI

Mohou mít supermasivní černé díry své souputníky? Podstata vzniku galaxií napovídá, že odpověď zní ano, a ve skutečnosti dvojice supermasivních černých děr mohou být ve vesmíru docela běžné. Supermasivní černá díra, která se ukrývá v centru naší Galaxie a kterou označujeme jako Sagittarius A*, má hmotnost odpovídající zhruba 4 miliónům hmotností Slunce.

V okolí černé díry Sagittarius A* se nachází docela hustá hvězdokupa. Velmi přesná měření drah těchto hvězd umožnila astronomům potvrdit existenci této supermasivní černé díry a určit její hmotnost. Již více než 20 let astronomové monitorují dráhy těchto hvězd v okolí supermasivní černé díry v centru Mléčné dráhy.

Na základě toho, co zde pozorujeme, astronomové odhalili, že jestli zde existuje průvodce supermasivní černé díry, může se jednat o druhou (sousední) černou díru, jejíž hmotnost přinejmenším 100 000× převyšuje hmotnost Slunce.

Téměř každá galaxie včetně Mléčné dráhy vlastní ve svém srdci supermasivní černou díru, jejichž hmotnosti se pohybují v rozmezí od několika miliónů po několik miliard Sluncí. Astronomové stále ještě zkoumají, proč se v centrech galaxií často nacházejí supermasivní černé díry. Jedna populární představa spojuje možnost, že supermasivní černé díry mohou mít své průvodce.

K pochopení této představy se musíme vrátit zpět do doby, kdy vesmír byl starý zhruba 100 miliónů roků, což je éra vůbec prvních zrozených galaxií. Byly mnohem menší než dnešní galaxie a zhruba 10 000× či vícekrát méně hmotné než naše současná Galaxie.

Uvnitř těchto velmi mladých galaxiích se nacházely hvězdy, které umíraly a vytvářely černé díry, jejichž hmotnosti dosahovaly 10 až 1 000 hmotností Slunce. Tyto černé díry padaly do gravitačního centra, tedy do srdce každé z galaxií. Protože se galaxie vyvíjely v důsledku kolizí a splynutí jedné s druhou, jejich srážky vedly k vytvoření dvojic supermasivních černých děr – klíčových částí této historie. Černé díry postupně nasávaly další materiál z okolí a zvětšovaly svoji velikost.

Jestliže opravdu má supermasivní černá díra svého průvodce obíhajícího kolem ní na blízké dráze, centrum galaxie je uzamčeno ve složitém tanci. Gravitační přitažlivost společníka bude rovněž uplatňovat vlastní vliv na blízké hvězdy a rušit jejich dráhy.

Dvě supermasivní černé díry obíhají navzájem kolem sebe a ve stejném okamžiku každá z nich ovlivňuje okolní hvězdy. Gravitační síly černých děr působí na tyto hvězdy a způsobují změny jejich dráhy; jinak řečeno, po jednom oběhu kolem dvojice supermasivních černých děr hvězdy nebudou zpět přesně na stejném místě, kde svůj oběh započaly.

Použitím našich znalostí gravitačních interakcí mezi eventuální dvojicí supermasivních černých děr a okolními hvězdami mohou astronomové předpovědět, co se může s hvězdami stát. Astrofyzikové mohou porovnávat svoje předpovědi s pozorováními a následně mohou vypočítat vhodné dráhy hvězd a určit, jestli supermasivní černá díra má průvodce, který gravitačně ovlivňuje své okolí.

Na základě sledování dobře známé hvězdy pojmenované S0-2, která obíhá supermasivní černou díru ležící v centru Galaxie jednou za 16 roků, můžeme již vyloučit představu, že zde existuje druhá supermasivní černá díra s hmotností přes 100 000 hmotností Slunce vzdálená více než 200 vzdáleností mezi Sluncem a Zemí.

Pokud by zde takový průvodce byl, pak bychom byli schopni detekovat jeho vliv na dráhu hvězdy S0-2. Avšak to neznamená, že menší doprovodná černá díra se zde nemůže ukrývat. Takový objekt nemusí modifikovat dráhu hvězdy S0-2 způsobem, který bychom mohli snadno odhalit.

Měření hvězdy S0-2 umožnila astronomům uskutečnit unikátní test Einsteinovy obecné teorie relativity. V květnu 2018 hvězda S0-2 prosvištěla kolem supermasivní černé díry ve vzdálenosti pouhých 130 astronomických jednotek – AU. V souladu s teorií relativity vlnová délka světla emitovaného hvězdou S0-2 by se měla prodloužit při jeho vystoupení z hluboké gravitační studny supermasivní černé díry.

Prodlužování vlnových délek světla, které předpověděl Einstein – což dělá hvězdy červenější – bylo detekováno a dokázáno a obecná teorie relativity přesně popisuje fyziku v těchto extrémních gravitačních podmínkách.

Dychtivě jsme čekali na druhé těsné přiblížení hvězdy S0-2, které nastane zhruba po 16 letech, protože astrofyzikové budou schopni testovat mnohem lépe předpověď Einsteinovy obecné teorie relativity včetně změny orientace protáhlé oběžné dráhy hvězdy.

Avšak jestli má supermasivní černá díra svého průvodce, mohlo by to pozměnit očekávané výsledky. Posléze, pokud zde existují dvě supermasivní černé díry obíhající v centru naší Galaxie navzájem jedna kolem druhé, jak se astronomové domnívají, je možné, že budou vyzařovat do prostoru gravitační vlny.

Od roku 2015 aparatury LIGO a Virgo detekovaly gravitační vlny vyzařované v důsledku splynutí černých děr hvězdné velikosti a neutronových hvězd. Tyto uskutečněné detekce otevřely pro astronomy nové okno pro pozorování vesmíru.

Jakékoliv vlny emitované naší dvojicí hypotetických supermasivních černých děr budou mít frekvence, které jsou příliš nízké pro citlivost detektorů LIGO a Virgo. Avšak plánovaný kosmický detektor gravitačních vln známý jako LISA může být schopen detekovat tyto vlny, které astrofyzikům pomohou určit, zda supermasivní černá díra v centru naší Galaxie je osamocená či zda má svého průvodce.

Zdroje a doporučené odkazy:
[1] sci-news.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Supermasivní černá díra, Galaxie Mléčná dráha


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »