Úvodní strana  >  Články  >  Exoplanety  >  Astronomové objevili chybějící článek při vzniku planet

Astronomové objevili chybějící článek při vzniku planet

Protoplanetární disk kolem mladé hvězdy
Autor: NASA/JPL

Podle současných názorů vznikají planety uvnitř disků prachu a plynu obklopujících mladé hvězdy. Avšak astronomové usilují o zkompletování souhrnné teorie jejich vzniku, která by vysvětlila, jak se počáteční zrnka prachu vyvinou do podoby planet. Francouzsko-anglicko-australský tým se domnívá, že našel odpověď v simulacích, ukazujících vznik „prachových pastí“, kde se fragmenty velikosti kamínků shromažďují a spojují dohromady, až vyrostou do podoby stavebních bloků planet. Svoje závěry publikovali v Monthly Notices of the Royal Astronomical Society.

Naše Sluneční soustava a další planetární systémy započaly svoji existenci jako disky plynu a prachových zrníček kolem mladých hvězd. Ne zcela probádané procesy přivedly tato malá zrníčka o velikosti několika milióntin metru (mikrometrů) do útvarů velikých několik centimetrů. Mechanismus, kterým se tato tělíska spojila v kilometrové balvany, tzv. planetesimály představujících planetární jádra, není zatím dobře prozkoumán.

Proces shromažďující kamínky a spojující je dohromady do těles velikosti asteroidů je méně jasný. Ale vzhledem k tomu, že již bylo objeveno téměř 3 600 známých planet mimo Sluneční soustavu, tj. kolem jiných hvězd, musí být celý tento proces všudypřítomný.

Jean-Francois Gonzalez, Centre de Recherche Astrophysique de Lyon, Francie, je hlavním autorem nové práce, který poskytnul následující komentář: „Až doposud jsme se snažili vysvětlit, jak se drobné kamínky mohou spojit dohromady a vytvořit planety, a zatím jsme objevili obrovský počet planet na oběžných drahách kolem hvězd. To nás staví před myšlenku, jak tuto záhadu vyřešit.“

Existují dvě hlavní bariéry, které je potřeba překonat, aby se z kamínků staly planetesimály. Především je nutné zastavit plyn a zrníčka prachu v disku směřující rychle směrem k centrální hvězdě, kde jsou rozbíjeny, unikají a není zde žádný vhodný materiál pro vznik planet. Druhým zpochybněním je, že rostoucí zrníčka mohou být rozbita při vysokorychlostních kolizích, kdy jsou rozdrobena na velký počet drobných úlomků a dochází ke změně procesu spojování.

Vytváření prachových pastí při vzniku planet Autor: Volker Schurbert
Vytváření prachových pastí při vzniku planet
Autor: Volker Schurbert
Kreslená ilustrace představuje jednotlivé fáze vytváření mechanismu prachových pastí. Centrální hvězda je vyobrazena žlutou barvou a obklopuje ji protoplanetární disk znázorněný modře. Zrníčka prachu vytvářejí průběžný pás napříč diskem. V první fázi zrníčka prachu zvětšují své rozměry a pohybují se směrem dovnitř k centrální hvězdě. Ve druhé fázi (prostřední část obrázku) větší zrníčka velikosti kamínků se v té době srážejí a dál pozvolna klesají dolů. Ve třetí etapě plyn a prach unikající směrem od hvězdy vytváří zpětnou reakcí oblasti – tzv. prachové pasti – kde se částice mohou hromadit.

Jedinými oblastmi v protoplanetárním disku – v místě zrodu planet – kde tyto problémy srážek mohou být překonány, jsou tzv. prachové pasti. V těchto oblastech vysokého tlaku je driftující pohyb pomalý, což umožňuje slepování zrníček prachu. V důsledku snížené rychlosti se mohou zrníčka prachu také vyhnout fragmentaci při vzájemných srážkách. Až doposud se astronomové domnívali, že prachové pasti mohou existovat ve velmi specifickém prostředí; avšak počítačové simulace naznačují, že jsou velmi běžné.

Efekt známý jako aerodynamická brzda zpětné reakce je obvykle zanedbatelný, stejně tak byl ignorován při výzkumu zvětšování a rozbíjení zrníček prachu. Avšak jeho efekty se stávají důležitými v prostředí bohatém na prach, jako třeba v případě vzniku planet.

Efekt zpětné reakce je dlouhotrvající při pohybu zrníček směrem ke hvězdě, který jim poskytuje čas na zvětšování velikosti. Jakmile je jejich velikost dostatečná, zrníčka se stávají vlastním pánem a plyn nemůže déle ovládat jejich pohyb. Plyn pod vlivem této zpětné reakce bude působit dostatečným tlakem směrem ven a vytvoří oblast vysokého tlaku: prachové pasti. Tyto samovolné pasti následně soustředí zrníčka prachu přicházející z vnějších oblastí disku, vytvoří velmi hustý prstenec z pevných částic a poskytnou tak pomocnou ruku pro vznik planet.

Jean-Francois Gonzalez dodává: „Byli jsme nadšeni z objevu, kdy pomocí správných ingrediencí na správném místě mohou samovolně vznikat prachové pasti v prostředí obrovských rozměrů. To je jednoduché a snadno pochopitelné řešení dlouhodobého problému při vzniku planet.“

Observatoře, jako je například ALMA v Chile, již pozorovaly světlé a tmavé prstence vznikajících planetárních soustav, které jsou podle názoru astronomů právě takovými prachovými pastmi. Jean-Francois Gonzalez se svými spolupracovníky a dalšími výzkumnými skupinami z celého světa nyní plánují rozšíření modelů prachových pastí  pro vznik planetesimál.

Zdroje a doporučené odkazy:
[1] phys.org
[2] universetoday.com
[3] www.astro.cz

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Exoplanety, Vznik planety, Prachové pasti


45. vesmírný týden 2025

45. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 3. 10. do 9. 11. 2025. Měsíc bude v úplňku. Saturn je dobře vidět večer, později v noci se přidává Jupiter, ráno končí viditelnost Venuše. Čeká nás poslední týden viditelnosti komety C/2025 A6 (Lemmon) a v neděli začne další okno viditelnosti slabší komety C/2025 R2 (SWAN) na tmavé večerní obloze. Z evropského kosmodromu Kourou v jihoamerické Francouzské Guayáně má startovat raketa Ariane 6 s radarovou družicí Sentinel-1D. V rámci sdílené mise Bandwagon-4 byla vynesena také česká družice CevroSat-1. Na Floridě proběhl statický zážeh velké rakety New Glenn. Před dvaceti lety začala mise sondy Venus Express jež přinesla velmi zajímavé poznatky o atmosféře Venuše.

Další informace »

Česká astrofotografie měsíce

Když se blýská v dáli

Titul Česká astrofotografie měsíce za září 2025 obdržel snímek „Když se blýská v dáli“, jehož autorem je astrofotograf Lukáš Veselý Měsíc září je již dávno za námi a s ním i další kolo soutěže Česká astrofotografie měsíce. A tentokrát se porota opravdu „zapotila“. Ze 42 zaslaných snímků vybrat ten

Další informace »

Poslední čtenářská fotografie

SH2-188

SH2-188 – „Kozmická kreveta“ v Kasiopeii Planetárna hmlovina Sharpless 2-188 (Sh2-188) leží v súhvezdí Kasiopeia vo vzdialenosti zhruba 3 000 svetelných rokov. Ide o zvyšok hviezdy podobnej Slnku, ktorá pred ~22 500 rokmi odvrhla svoje vonkajšie obaly a v jej strede zostal horúci biely trpaslík (WD 0127+581). Hmlovina je zapísaná aj pod označeniami LBN 633, Simeis 22 alebo PN G128.0-4.1. Na prvý pohľad vyzerá skôr ako supernovový zvyšok – jasný červený oblúk s dlhým chvostom. Nie je to náhoda: centrálny biely trpaslík sa pohybuje medzihviezdnym plynom rýchlosťou asi 120 km/s. Pred sebou vytláča oblúk rázovej vlny, ktorý na fotografii tvorí jasnú, jemne štruktúrovanú „krevetu/kozmic­kú vlnu“. Za hviezdou sa naopak tiahne veľmi slabý oblak plynu a prachu – materiál odfúknutý dozadu ako vlajka vo vetre. Celá bublina má priemer približne 2 svetelné roky a na oblohe zaberá niekoľko oblúkových minút, pričom najslabšie časti prstenca a chvosta siahajú až do priemeru ~15′. Sh2-188 objavili v roku 1951 Vera Gaze a Grigorij Šajn na Kryme a dlho sa považovala za pozostatok supernovy. Až spektroskopické merania v 80. rokoch ukázali, že ide o planetárnu hmlovinu s typickým bohatstvom prvkov ako vodík, hélium, kyslík, dusík a síra. Neskoršie snímky z Hα prieskumu IPHAS odhalili, že oblúk je v skutočnosti súčasťou takmer uzavretého prstenca s rozsiahlym chvostom – z Sh2-188 sa tak stal učebnicový príklad toho, ako medzihviezdne prostredie dokáže zdeformovať planetárnu hmlovinu a „zjasniť“ jej náveternú stranu. Na mojej fotografii dominuje červené H-alfa žiarenie ionizovaného vodíka, ktoré kreslí tenké vláknité štruktúry rázovej vlny na pozadí hustého poľa hviezd v rovine Mliečnej cesty. Je to veľmi slabý objekt – okrem jasného oblúka sú zvyšky prstenca a chvosta viditeľné len pri dlhých expozíciách a starostlivom spracovaní dát. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBH filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 83x180sec. R, 79x180sec. G, 70x180sec. B, 84x120sec. L, 83x600sec Halpha, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 8.10. až 1.11.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »