Úvodní strana  >  Články  >  Exoplanety  >  Astronomové rozluštili záhadu chybějícího oxidu uhelnatého v protoplanetárních discích
Jan Herzig Vytisknout článek

Astronomové rozluštili záhadu chybějícího oxidu uhelnatého v protoplanetárních discích

Umělecká představa protoplanetárního disku, ve výřezu představa oxidu uhelnatého ve formě ledu
Autor: M.Weiss/Center for Astrophysics | Harvard & Smithsonian

V protoplanetárních discích astronomové často pozorují oxid uhelnatý. V posledních asi 10 letech se ale začalo ukazovat, že ho je tam méně, než by podle teorie mělo být. Za předpokladu, že byly původní studie správné, chybělo obrovské množství tohoto oxidu ve všech pozorováních protoplanetárních disků. Konkrétně z výzkumů vyplývalo, že množství této sloučeniny je v závislosti na jednotlivých případech třikrát až stokrát menší, než vědci očekávali.

Oxid uhelnatý je přitom zcela zásadní, co se týče studia protoplanetárních disků. Používá se totiž ke zjišťování hmotnosti, složení nebo teploty disku. Znamená to, že mnohé ze znalostí, které o protoplanetárních discích máme, nemusí být pravdivé, protože této sloučenině dostatečně nerozumíme?

Vědecký tým v čele s Dianou Powellovou z Harvard-Smithsonian Center for Astrophysics se rozhodl tento problém rozluštit. Jednou z možností, kam se mohl oxid uhelnatý vytratit, je, že zmrzl a proměnil se v led. V rámci toho využili astrofyzikální model používaný pro popis mraků v exoplanetárních atmosférách, který detailně popisuje možnosti formace ledu na různých částicích, jak krystalizuje a později kondenzuje. Tento model aplikovali na zkoumané protoplanetární disky, a už jen zbývalo tuto teorii buď potvrdit, nebo vyvrátit.

V souvislosti s tím model porovnali s daty získanými observatoří ALMA (Atacama Large Millimeter Array), největším radioastronomickým přístrojem na světě nacházejícím se v chilské poušti Atacama na plošině Chajnantor v nadmořské výšce 5 104 metrů. Jednalo se o data ze čtyř velmi dobře prozkoumaných disků hvězd TW Hya, HD 163296, DM Tau a IM Lup. Zjistili, že s jejich modelem perfektně souhlasí každé ze čtyř pozorování. Z toho plyne, že v těchto protoplanetárních discích oxid uhelnatý vůbec nechyběl, ale zkrátka se proměnil v led. Pozorování v radiové oblasti, jaká provádí observatoř ALMA, umožňují vidět oxid uhelnatý v jeho plynné fázi, ale jako led, zvláště ve velkých shlucích, nikoliv.

Mění to náš pohled na distribuci ledu a plynu v protoplanetárních discích a zároveň ukazuje, jak je modelování podobných situací důležité pro pochopení principů takovýchto prostředí, říká Diana Powellová. Zároveň také věří, že v budoucnu bude moci být jejich studie ještě potvrzena Webbovým dalekohledem (JWST), který by mohl být dostatečně výkonný na přímou detekci ledu v těchto discích.

Protoplanetární disky vznikají v průběhu formace nových hvězd a jsou jakýmsi předkem planetárních soustav. Když se gravitačně zhroutí materiál v hvězdné porodnici, což vede k zážehu termonukleárních reakcí a vzniku hvězdy, seskupí se zbývající prach a plyn právě do rotujícího disku kolem mladé hvězdy. Postupné srážení hmoty v tomto disku dává vzniknout stále větším tělesům, a to až do chvíle, kdy se drtivá většina látky v disku seskupí do řádově jednotek těles, které nazýváme planetami. Zkoumání protoplanetárních disků je tak velmi důležitou součástí komplexní mozaiky popisující vznik hvězd a planetárních soustav jako takových.

Zdroje a doporučené odkazy:
[1] phys.org



O autorovi

Jan Herzig

Jan Herzig

Narodil se roku 2008 v Plzni, žije v Horšovském Týně. Studuje na Gymnáziu J. Š. Baara v Domažlicích. Vesmír ho uchvátil v 11 letech, nyní mu věnuje většinu svého času. Věnuje se teoretické i praktické astronomii. Na teoretické obdivuje možnost popsání vesmíru pomocí elegantních rovnic. V souvislosti s praktickou ho fascinuje pohled na vesmír vlastníma očima i svým dvaceticentimetrovým dalekohledem. Baví ho i popularizace astronomie a kosmonautiky, a to jak psaním článků, tak komentováním na youtube či v rádiu. V posledních třech letech se čtyřikrát umístil na vítězných pozicích ve finálových kolech Astronomické olympiády. Na XXVI. Mezinárodní astronomické olympiádě získal bronzovou medaili, na I. a II. Mezinárodní olympiádě v astronomii a astrofyzice pro juniory zlatou medaili, ve druhém případě k tomu dosáhl na 1. místo v Evropě. Správce Instagramu ČAS.

Štítky: Protoplanetární disk


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »