Astronomové rozluštili záhadu chybějícího oxidu uhelnatého v protoplanetárních discích
V protoplanetárních discích astronomové často pozorují oxid uhelnatý. V posledních asi 10 letech se ale začalo ukazovat, že ho je tam méně, než by podle teorie mělo být. Za předpokladu, že byly původní studie správné, chybělo obrovské množství tohoto oxidu ve všech pozorováních protoplanetárních disků. Konkrétně z výzkumů vyplývalo, že množství této sloučeniny je v závislosti na jednotlivých případech třikrát až stokrát menší, než vědci očekávali.
Oxid uhelnatý je přitom zcela zásadní, co se týče studia protoplanetárních disků. Používá se totiž ke zjišťování hmotnosti, složení nebo teploty disku. Znamená to, že mnohé ze znalostí, které o protoplanetárních discích máme, nemusí být pravdivé, protože této sloučenině dostatečně nerozumíme?
Vědecký tým v čele s Dianou Powellovou z Harvard-Smithsonian Center for Astrophysics se rozhodl tento problém rozluštit. Jednou z možností, kam se mohl oxid uhelnatý vytratit, je, že zmrzl a proměnil se v led. V rámci toho využili astrofyzikální model používaný pro popis mraků v exoplanetárních atmosférách, který detailně popisuje možnosti formace ledu na různých částicích, jak krystalizuje a později kondenzuje. Tento model aplikovali na zkoumané protoplanetární disky, a už jen zbývalo tuto teorii buď potvrdit, nebo vyvrátit.
V souvislosti s tím model porovnali s daty získanými observatoří ALMA (Atacama Large Millimeter Array), největším radioastronomickým přístrojem na světě nacházejícím se v chilské poušti Atacama na plošině Chajnantor v nadmořské výšce 5 104 metrů. Jednalo se o data ze čtyř velmi dobře prozkoumaných disků hvězd TW Hya, HD 163296, DM Tau a IM Lup. Zjistili, že s jejich modelem perfektně souhlasí každé ze čtyř pozorování. Z toho plyne, že v těchto protoplanetárních discích oxid uhelnatý vůbec nechyběl, ale zkrátka se proměnil v led. Pozorování v radiové oblasti, jaká provádí observatoř ALMA, umožňují vidět oxid uhelnatý v jeho plynné fázi, ale jako led, zvláště ve velkých shlucích, nikoliv.
„Mění to náš pohled na distribuci ledu a plynu v protoplanetárních discích a zároveň ukazuje, jak je modelování podobných situací důležité pro pochopení principů takovýchto prostředí,“ říká Diana Powellová. Zároveň také věří, že v budoucnu bude moci být jejich studie ještě potvrzena Webbovým dalekohledem (JWST), který by mohl být dostatečně výkonný na přímou detekci ledu v těchto discích.
Protoplanetární disky vznikají v průběhu formace nových hvězd a jsou jakýmsi předkem planetárních soustav. Když se gravitačně zhroutí materiál v hvězdné porodnici, což vede k zážehu termonukleárních reakcí a vzniku hvězdy, seskupí se zbývající prach a plyn právě do rotujícího disku kolem mladé hvězdy. Postupné srážení hmoty v tomto disku dává vzniknout stále větším tělesům, a to až do chvíle, kdy se drtivá většina látky v disku seskupí do řádově jednotek těles, které nazýváme planetami. Zkoumání protoplanetárních disků je tak velmi důležitou součástí komplexní mozaiky popisující vznik hvězd a planetárních soustav jako takových.
Zdroje a doporučené odkazy:
[1] phys.org