Úvodní strana  >  Články  >  Hvězdy  >  GAIA upřesnila rychlost oběhu Slunce a jeho vzdálenost od středu Galaxie

GAIA upřesnila rychlost oběhu Slunce a jeho vzdálenost od středu Galaxie

Evropská družice GAIA na pozadí Mléčné dráhy
Autor: ESA/ATG medialab; ESO/S. Brunier

Využitím nových metod a dat z evropské astronomické družice GAIA astronomové z univerzity v Torontu odhadli, že rychlost Slunce na oběžné dráze kolem středu naší Galaxie je přibližně 240 kilometrů za sekundu. Kromě toho dospěli při výpočtech k závěru, že vzdálenost Slunce od galaktického centra je přibližně 7,9 kiloparseků (kpc) – tedy téměř 26 000 světelných roků.

Využitím dat z astronomické observatoře GAIA a z průzkumu RAVE (RAdial Velocity Experiment) určil Jason Hunt se svými spolupracovníky rychlosti více než 200 000 hvězd vzhledem ke Slunci. Jason Hunt je pracovníkem na Dunlap Institute for Astronomy & Astrophysics, University of Toronto. Astronomové zjistili nepřekvapující rozložení relativních rychlostí: objevili hvězdy pohybující se pomaleji, rychleji a stejnou rychlostí jako Slunce.

Avšak objevili také nedostatek hvězd s galaktickou oběžnou rychlostí nižší než obíhá Slunce. Dospěli k závěru, že chybějící hvězdy byly stálicemi s nulovým  momentem hybnosti, tj. že neobíhaly kolem středu naší Galaxie jako Slunce a další hvězdy Mléčné dráhy.

Hvězdy, jejichž  moment hybnsoti se blížil nule, spadly směrem ke galaktickému centru, kde byly silně ovlivněny extrémními gravitačními silami,“ říká Jason Hunt. „Byly rozptýleny na chaotické dráhy, odkud se dostaly nad nebo pod galaktickou rovinu a stranou z okolí Slunce.“

Jason Hunt se svými spolupracovníky pak zkombinovali tato zjištění s vlastním pohybem supermasivní černé díry označované jako Sagittarius A*, která se nachází v centru naší Galaxie a vypočítali její vzdálenost od Slunce na necelých 26 000 světelných roků.

Takzvaný vlastní pohyb je pohyb objektu napříč oblohou vzhledem k velmi vzdáleným objektům na pozadí. Astronomové vypočítali vzdálenost  stejným způsobem, jako když kartografové využívají triangulaci při určování vzdáleností na zemském povrchu na základě pozorování objektu ze dvou odlišných míst, jejichž vzdálenost je známá.

Tuto metodu poprvé použil spoluautor článku, současný předseda oddělení astronomie a astrofyziky na univerzitě v Torontu, Ray Calberg a jeho spolupracovník Kimmo Innanen. Avšak výsledky práce Ray Calberga a Kimmo Innanena vycházely z měření méně než 400 hvězd.

GAIA vytváří dynamickou trojrozměrnou mapu naší Galaxie na základě měření vzdáleností, poloh a vlastních pohybů hvězd. Jason Hunt se svými spolupracovníky vycházeli ve své práci z počátečních dat naměřených družicí GAIA, která zahrnují stovky tisíc hvězd. Na konci pětileté mise kosmická observatoř GAIA důkladně zmapovala více než jednu miliardu hvězd.

Podle Jasona Hunta „poslední výsledky měření z družice GAIA za rok 2017 by měly být schopny zvýšit přesnost našich měření rychlosti Slunce v rámci přibližně jednoho km/s, což rovněž povede ke zvýšení přesnosti našich měření, pokud se týká vzdálenosti Slunce od středu Galaxie.“

Evropská astronomická observatoř GAIA o hmotnosti 2030 kg byla vypuštěna 19. 12. 2013 pomocí ruské rakety Sojuz. Měření provádí z oběžné dráhy kolem Lagrangeova libračního bodu L2, který se nachází ve vzdálenosti přibližně 1,5 miliónu kilometrů od Země, na opačné straně než Slunce. Předpokládá se, že určí přesné vzdálenosti, jasnosti a rychlosti asi u jednoho procenta hvězd v naší Galaxii. První katalog více než jedné miliardy prozkoumaných hvězd byl publikován v září 2016.

Zdroje a doporučené odkazy:
[1] phys.org
[2] sci.esa.int

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Mléčná dráha, Slunce, Družice GAIA


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »