Úvodní strana  >  Články  >  Sluneční soustava  >  Kometa 67P/Churyumov-Gerasimenko patrně produkuje kyslík
Marek Biely Vytisknout článek

Kometa 67P/Churyumov-Gerasimenko patrně produkuje kyslík

Kometa 67P/Churyumov-Gerasimenko na snímku ze sondy Rosetta
Autor: ESA/Rosetta

Ačkoliv sonda Rosetta společně s přistávacím modulem Philae svou misi u komety 67P/Churyumov-Gerasimenko už ukončila, tu a tam se stále najde nějaká zajímavost zjištěná s povrchu či okolí komety, která stojí za zmínku. A přesně to se stalo i nyní - vědci totiž tvrdí, že kometa 67P/Churyumov-Gerasimenko produkuje kyslík.

Ke konci roku 2015 jsme se dozvěděli o tom, že kolem komety 67P/Churyumov-Gerasimenko byl detekován výskyt molekulárního kyslíku. Podle vědců byla tato skutečnost největším překvapením celé mise Rosetta. Sonda následně začala zkoumat, jak se mohl kyslík u komety vzít. Vycházíme z poznatků, že ačkoliv je kyslík u nás na Zemi zcela běžnou látkou, ve vesmíru byl dříve detekován jen dvakrát a na kometě doposud ještě nikdy. Vědci nakonec došli k poměrně nečekaným závěrům.

Zjistilo se, že zdrojem kyslíku je kometa samotná. Látka se uvnitř komety možná nacházela už v době, kdy těleso vzniklo. Prvotní teorie hovoří o tom, že kyslík poté zamrzl v jádře komety a začal se postupně uvolňovat, až když se kometa dostávala do takové vzdálenosti ke Slunci, která by tento proces umožňovala. Nakonec by ale všechno mohlo být jinak.

Odborník na chemické reakce Konstantinos P. Giapis a jeho spolupracovníci si myslí, že kyslík nacházející se kolem jádra komety nemusí být starodávný, ale že je produkován díky interakci mezi molekulami vody v komě a částicemi pocházejícími ze slunečního záření. Tento proces nám zatím není příliš známý, ale pokud by tomu tak skutečně bylo, jednalo by se o převratný objev. Ovšem zpráva o tom, že kometa 67P/Churyumov-Gerasimenko patrně produkuje kyslík, je impozantní sama o sobě.

Zdroje a doporučené odkazy:
[1] Rozsáhlejší článek v angličtině na stránkách space.com

Převzato: Stránky Společnosti pro MeziPlanetární Hmotu



O autorovi

Marek Biely

Marek Biely

Narodil se 23. 5. 1998 v Brně. Pracuje ve školství. V podstatě od malička se zabývá astronomií, nejvíce pak kometami, které jej uchvátily zejména díky příletu jasné C/2011 L4 (PanSTARRS) v roce 2013. Komety pozoruje vizuálně a provádí jejich odhady jasnosti. Zároveň o nich píše články pro astro.cz a kommet.cz. Mezi jeho další zájmy patří ještě meteorologie a sport. Kontaktovat jej můžete na e-mailu biely.marek@seznam.cz.

Štítky: 67p, Rosetta, Kometa Churyumov-Gerasimenko


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »