Úvodní strana  >  Články  >  Sluneční soustava  >  Planeta Saturn rychle ztrácí své prstence

Planeta Saturn rychle ztrácí své prstence

Planeta Saturn na snímku ze sondy Cassini pořízené 25. 4. 2016
Autor: NASA/JPL-Caltech/Space Science Institute

Nové výzkumy NASA potvrzují, že planeta Saturn postupně ztrácí svoji ikonickou ozdobu v podobě prstenců poměrně velkou rychlostí odhadnutou na základě pozorování, která uskutečnily kosmické sondy Voyager 1 a Voyager 2 před více než dvěma desetiletími. Prstence jsou přitahovány na planetu Saturn její gravitací v podobě deště ledových zrníček ovlivňovaných magnetickým polem Saturnu.

Odhadli jsme, že tento ´déšť z prstenců´ odvádí ze Saturnových prstenců tak velké množství vodních produktů, které by zaplnilo olympijský plavecký bazén za pouhé půl hodiny,“ říká James O’Donoghue of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. „Z toho vyplývá, že celá soustava prstenců zmizí zhruba za 300 miliónů roků. K tomu je třeba doplnit měření sondy Cassini, která detekovala materiál padající z prstenců do oblasti Saturnova rovníku v množství více než 10 000 kg hmoty za sekundu, což vede k závěru, že životnost prstenců je méně než 100 miliónů roků. To je relativně krátká doba ve srovnání s dobou existence planety přibližně 4,5 miliardy roků.“ James O’Donoghue je hlavní autor studie publikované ve vědeckém časopise Icarus.

Astronomové dlouho zvažovali, jestli se Saturn zformoval již s prstenci nebo jestli je planeta získala až mnohem později, během svého života. Nové výzkumy favorizují druhou variantu, z které vyplývá, že je nepravděpodobné, aby prstence byly starší než 100 miliónů roků. „Jsme šťastní, že můžeme pozorovat prstence kolem planety Saturn, které, jak se zdá, jsou právě uprostřed svého života. Nicméně pokud jsou prstence dočasným jevem, možná jsme již zmeškali pohled na obří soustavy prstenců kolem Jupitera, Uranu a Neptunu, které dnes mají pouze podobu tenkých prstýnků,“ dodává James O’Donoghue.

Byly navrženy různé teorie pro vysvětlení původu prstenců. Pokud vznikly později po zformování planet, za jejich vytvoření může například srážka malých ledových měsíců obíhajících kolem Saturnu v důsledku ovlivnění jejich drah gravitačním působením prolétající komety či asteroidu.

Částice Saturnova prstence jsou magnetickým polem planety směrovány do její atmosféry Autor: NASA’s Goddard Space Flight Center/David Ladd
Částice Saturnova prstence jsou magnetickým polem planety směrovány do její atmosféry
Autor: NASA’s Goddard Space Flight Center/David Ladd
První náznak, že částice z prstenců padají na Saturna, pocházejí z pozorování sond Voyager, které detekovaly zdánlivě nesouvisející jevy: jednalo se o podivné variace v uspořádání elektricky nabitých částic ve svrchních vrstvách atmosféry (ionosféry), variace hustoty v Saturnových prstencích a o trojici úzkých tmavých pásů kolem planety ve středních šířkách severní polokoule. Tyto tmavé pásy se objevily na snímcích zamlžené svrchní atmosféry (stratosféry) pořízených sondou Voyager 2 v roce 1981.

Saturnovy prstence jsou ponejvíce složeny z kousků vodního ledu velikosti mikroskopických zrníček až po balvany o velikosti několika metrů. Částice v prstencích jsou polapeny v rovnováze mezi gravitací planety, která je chce přitáhnout na planetu a jejich orbitální rychlostí, která se snaží vymrštit je do kosmického prostoru. Nepatrné částice mohou nést elektrický náboj v důsledku působení ultrafialového záření Slunce nebo oblaků plazmy vzniklých při bombardování částic v prstencích prostřednictvím mikrometeoroidů. Když se to stane, částice mohou pocítit vliv magnetického pole Saturnu, které zakřivuje jejich dráhy směrem k planetě. Některé nabité částice prstence jsou ovlivňovány velmi intenzivně a gravitace planety je nasměruje podél siločar magnetického pole do horních vrstev atmosféry.

Astronomové také objevili zářící pás ve vysokých šířkách severní polokoule. Je to v místě, kde magnetické pole Saturnu protíná dráha měsíce Enceladus – geologicky aktivní těleso, z jehož povrchu tryskají gejzíry vody do okolního prostoru, z čehož vyplývá, že některé z vyvržených částic mohou rovněž padat na planetu Saturn. „To nebylo celé překvapení,“ říká Jack Connerney z NASA. „Identifikovali jsme Enceladus a prstenec E rovněž jako bohatý zdroj vody na základě dalších tmavých pásů nalezených na starých snímcích ze sond Voayger.“ Gejzíry jako první pozorovala sonda Cassini v roce 2005. Mají původ v oceánu kapalné vody pod zmrzlým povrchem tohoto malého měsíce o průměru 505 km. Jeho geologická aktivita a vodní oceán dělají z Enceladu jedno z nejslibnějších míst pro hledání mimozemského života.

Zdroje a doporučené odkazy:
[1] scitechdaily.com
[2] nasa.gov
[3] astrobob.areavoices.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Voyager, Saturnovy prstence, Planeta Saturn


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »