Úvodní strana  >  Články  >  Vzdálený vesmír  >  Rozložení prachu v naší Galaxii

Rozložení prachu v naší Galaxii

Rozložení molekulárního plynu v naší Galaxii Autor: ESA - C. Carreau
Rozložení molekulárního plynu v naší Galaxii
Autor: ESA - C. Carreau
Objeven doposud neznámý stavební materiál pro vznik nových hvězd v naší Galaxii.

Nově vzniklé hvězdy září velmi intenzivně, jako by přímo volaly: „Hej, podívej se na nás!“ Avšak ne všechny hvězdy v naší Galaxii jsou snadno pozorovatelné. Značné množství hmoty mezi hvězdami – studeného plynného vodíku, z kterého se mohou zrodit nové hvězdy – představuje téměř neproniknutelnou překážku při jejich pozorování.

Nové výzkumy byly uskutečněny pomocí kosmické observatoře Herschel Space Observatory, kterou provozovala Evropská kosmická agentura ESA s významnou spoluúčastí NASA. Pozorované infračervené záření těchto „neviditelných“ zásobáren plynu odhalilo jejich polohu i jejich množství. Podobná metoda, jaká se používá k vizualizaci vířivého pohybu průhledné tekutiny, využil tým družice Herschel k sestavení mapy rozložení jinak neviditelného plynného vodíku.

Objev odhalil, že zásoby surového materiálu pro vznik nových hvězd byly doposud příliš podceňovány – sahají mnohem dále od středu Galaxie, než jsme se domnívali.

„Nacházejí se zde obrovské dodatečné zásoby materiálu, který je k dispozici pro vznik nových hvězd. O jeho existenci jsme dosud nevěděli,“ říká Jorge Pineda (NASA, Jet Propulsion Laboratory, Pasadena, Kalifornie), hlavní autor nového článku o objevu, který byl publikován ve vědeckém časopise Astronomy and Astrophysics.

„Museli jsme se vydat do vesmíru, abychom vyřešili tuto záhadu, protože atmosféra Země absorbuje právě ten druh záření, které jsme chtěli detekovat,“ říká William Langer (JPL), vedoucí vědecký pracovník týmu observatoře Herschel, zaměřeného na vytvoření mapy zachycující rozložení plynu. „Potřebovali jsme detekovat daleké infračervené záření k určení polohy těchto plynných oblaků. Tato pozorování mohl realizovat výhradně kosmický dalekohled Herschel.“

Hvězdy vznikají z plynných oblaků tvořených molekulami vodíku. Prvním krokem k vytvoření hvězdy je dostatečné stlačení plynu, kdy dochází ke spojování přítomných atomů a k vytváření molekul. Na začátku procesu je plyn značně rozptýlený, avšak v důsledku působení gravitace a někdy i jiných dostředivých sil, se plyn shlukuje a zvyšuje se jeho hustota. Když je oblak vodíku dostatečně hustý, zažehnou se termojaderné reakce – zrodila se hvězda, která září vlastním světlem.

Zásobárny plynného vodíku pro vznik nových hvězd Autor: ESA/NASA/JPL-Caltech
Zásobárny plynného vodíku pro vznik nových hvězd
Autor: ESA/NASA/JPL-Caltech
Astronomové zkoumající hvězdy chtějí pokračovat ve výzkumu a porozumět tomu, jak z hvězdného batolete, na jehož počátku je molekulární mračno, nakonec vznikne plnohodnotná žhnoucí koule. K tomu je nutné zmapovat rozložení hvězdného vodíkového paliva napříč naší Galaxií. Bohužel, většina molekulárního vodíku ve vesmíru je příliš studená, a tudíž nezáří v oboru viditelného světla. Proto jej nemůžeme pozorovat obyčejnými dalekohledy.

V posledních desetiletích se astronomové zaměřili na hledání molekul oxidu uhelnatého, který se ve vesmíru vyskytuje ruku v ruce s molekulami vodíku a odhaluje tak jejich polohu. Avšak i tato metoda má svá omezení. V oblasti, kde je plyn zrovna na počátku vytváření rezervoáru – nejranější etapy vzniku plynného oblaku – žádný oxid uhelnatý se zde nenachází.

„Ultrafialové záření rozbíjí molekuly oxidu uhelnatého,“ říká William Langer. „V prostředí mezi hvězdami, kde je tento plyn velmi řídký, není dostatek prachu, který by ochránil plynné molekuly před jejich rozbitím působením ultrafialového světla.“

Odlišný stopař – ionizovaný uhlík – však setrvává v těchto velkých, ale relativně prázdných oblastech a může být využit k objevení molekul vodíku. Astronomové pozorovali ionizovaný uhlík z kosmického prostoru (pomocí astronomických družic) již dříve, avšak kosmická observatoř Herschel vůbec poprvé umožnila sestavit mimořádně kvalitní mapu rozložení vodíku a jeho množství napříč naší Galaxií.

„Díky vysoké citlivosti kosmického dalekohledu Herschel můžeme od sebe oddělit materiál pohybující se různou rychlostí,“ říká Paul Goldsmith (NASA, JPL), spoluautor vědecké práce. „Nakonec jsme získali celkový obraz rozložení materiálu dostupného pro tvorbu budoucích generací hvězd.“

Zdroj: www.nasa.gov a sci.esa.int
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Herschel space observatory, Vznik hvězd, Naše Galaxie


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »