Úvodní strana  >  Články  >  Kosmonautika  >  Přistane NASA na Jupiterově měsíci Europa?

Přistane NASA na Jupiterově měsíci Europa?

Návrh přistávacího modulu Europa Lander
Autor: NASA/JPL-Caltech

Oznámení o možném vědeckém významu přistávacího modulu (landeru) na povrchu Jupiterova ledového měsíce Europa bylo doručeno NASA a agentura nyní zapojila širokou vědeckou komunitu k zahájení diskuse o těchto návrzích. V úvodu tohoto článku je zveřejněno umělecké ztvárnění koncepčního návrhu potenciální budoucí mise k přistání automatické sondy na povrchu Europy. Přistávací modul je znázorněn s delším ramenem určeným k odběru vzorků, které předtím vyhloubilo malou prohlubeň v blízkosti modulu.

Kruhová „mísa“ v horní části landeru je určená k dvojímu účelu: je to vysokozisková anténa a stožár se stereo zobrazovací kamerou instalovanou na zadní straně antény. Tři vertikální útvary rozmístěné kolem středu vrchní stěny landeru jsou připevňovací místa pro lana, která spustí přistávací modul s létajícího jeřábu na povrch měsíce, který je uvažován jako přistávací systém pro tuto misi (obdoba přistání roveru Curiosity na Marsu).

Počátkem roku 2016, jako odpověď kongresové direktivě, začala NASA’s Planetary Science Division přípravnou fázi A výzkumu k vyhodnocení vědeckého významu a konstrukčního návrhu budoucí mise k přistání na Jupiterově měsíci Europa. NASA obvykle provádí takovéto studie dlouho před zahájením jakýchkoliv misí k získání znalostí o proveditelnosti a vědeckých hodnotách potenciální mise. V červnu 2016 NASA svolala 21členný tým vědců pro zahájení SDT (Science Definition Team). Poté tento vědecký tým zvážil vymezení realizovatelnosti a vhodných souborů vědeckých úkolů a měření pro koncept celé mise, které byly předloženy ve zprávě pro NASA ze 7. 2. 2017.

Návrh přistávacího modulu Europa Lander Autor: NASA/JPL-Caltech
Návrh přistávacího modulu Europa Lander
Autor: NASA/JPL-Caltech
Zpráva uvádí tři vědecké cíle připravované mise. Hlavním cílem je hledání důkazů případného života na Europě. Další cíle mají za úkol vyhodnotit obyvatelnost měsíce Europa přímou analýzou materiálu odebraného z povrchu a charakterizovat vlastnosti povrchu a podpovrchových vrstev za účelem podpory budoucího automatického výzkumu Europy a jejího podpovrchového oceánu. Zpráva rovněž popisuje některé z hypotetických přístrojů, o kterých se předpokládá, že uskuteční měření ke splnění těchto úkolů.

Vědci souhlasí s názorem, že existují docela silné důkazy o tom, že Europa, která je nepatrně menší než velikost souputníka naší Země, má pod ledovou kůrou globální slaný oceán. Tento oceán obsahuje přinejmenším dvojnásobné množství vody, v porovnání se zásobami vody v oceánech na Zemi. Zatímco nedávné objevy ukazují, že hodně těles ve Sluneční soustavě buď má podpovrchové oceány nyní, nebo je měla v minulosti. Europa je jedním z míst, kde přítomný oceán může být v kontaktu s kamenným mořským dnem (druhým je Saturnův měsíc Enceladus). Tyto vzácné podmínky dělají z Europy jeden z cílů s nejvyšší prioritou při pátrání po životě mimo planetu Zemi.

V rámci SDT bylo dáno za úkol vyvinout strategii detekce života pro první realizovanou misi NASA od éry sond Viking na Marsu před více než čtyřmi desetiletími. Zpráva přijala doporučení, pokud se týká počtu a typu vědeckých přístrojů, které budou nutné k potvrzení, že jsou přítomny znaky života ve vzorcích odebraných z povrchu ledového měsíce.

Vědecký tým se také důkladně věnoval společně s techniky konstrukci systémů způsobilých k přistání na povrchu, o kterém je toho známo jen velmi málo. Za předpokladu, že Europa nemá žádnou atmosféru, tým vyvinul koncept, který by mohl doručit vědecké vybavení na ledový povrch bez možnosti využití technologií, jakými jsou tepelný štít či padáky.

Koncept mise Europa Orbiter Autor: NASA/JPL-Caltech
Koncept mise Europa Orbiter
Autor: NASA/JPL-Caltech
Koncept přistávacího modulu je oddělený od projektu orbiteru vybaveného panely slunečních baterií, který je nyní připravován ke startu počátkem příští dekády. Sonda přilétne k planetě Jupiter po několik roků trvající cestě a kolem obří plynné planety bude kroužit po dráze, která ji každé dva týdny přivede na sérii 45 těsných průletů kolem měsíce Europa. Mise zaměřená na několikanásobné průlety kolem Europy bude zkoumat obyvatelnost měsíce prostřednictvím mapování jeho složení, stanovením charakteristik oceánu a ledové kůry a zvýšením našich vědomostí o geologii tohoto zajímavého ledového měsíce. Mise si rovněž klade za cíl položení základů pro budoucí landery provedením detailního průzkumu pomocí výkonných kamer.

Rovněž Evropská kosmická agentura ESA pracuje na projektu sondy JUICE (JUpiter ICy moons Explorer), jejíž start je naplánován na rok 2022 s příletem k Jupiteru v roce 2030.

Zdroje a doporučené odkazy:
[1] www.nasa.gov
[2] spaceflightinsider.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: NASA, Měsíc Europa, Europa lander


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »